Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11400, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762571

RESUMEN

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Asunto(s)
Anticonvulsivantes , Sistemas de Liberación de Medicamentos , Gelatina , Fenitoína , Dióxido de Silicio , Gelatina/química , Anticonvulsivantes/química , Anticonvulsivantes/administración & dosificación , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Fenitoína/química , Fenitoína/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Humanos , Compuestos Férricos/química , Liberación de Fármacos , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Tamaño de la Partícula
2.
Int J Biol Macromol ; 269(Pt 1): 132086, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705321

RESUMEN

Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.

3.
Environ Res ; 252(Pt 2): 118893, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604485

RESUMEN

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.

4.
Sci Bull (Beijing) ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38616151

RESUMEN

There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m-2), notch-insensitivity, and reprocessability compared with non-fluorinated counterpart biphenolic polyurethane (BPPU) elastomer. Taking advantage of the above-mentioned merits of FPPU elastomer, we prepare an anti-fouling triboelectric nanogenerator (TENG) with a self-healable, and reprocessable elastic substrate. Benefiting from stronger electron affinity of fluorine atoms than hydrogen atoms, this electronic device exhibits ultrahigh peak open-circuit voltage of 302.3 V compared to the TENG fabricated from BPPU elastomer. Furthermore, a healable and stretchable conductive composite is prepared. This research provides a distinct and general pathway toward constructing high-performance elastomers and will enable a series of new applications.

5.
Sci Adv ; 10(12): eadk5177, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517961

RESUMEN

The limited capacity of typical materials to resist stress loading, which affects their mechanical performance, is one of the most formidable challenges in materials science. Here, we propose a bone-inspired stress-gaining concept of converting typically destructive stress into a favorable factor to substantially enhance the mechanical properties of elastomers. The concept was realized by a molecular design of dynamic poly(oxime-urethanes) network with mesophase domains. During external loading, the mesophase domains in the condensed state were aligned into more ordered domains, and the dynamic oxime-urethane bonds served as the dynamic molecular locks disassociating and reorganizing to facilitate and fix the mesophase domains. Consequently, the tensile modulus and strength were enhanced by 1744 and 49.3 times after four cycles of mechanical training, respectively. This study creates a molecular concept with stress-gaining properties induced by repeated mechanical stress loading and will inspire a series of innovative materials for diverse applications.

6.
Sci Rep ; 14(1): 5389, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443417

RESUMEN

Polymer microcapsules containing cyanoacrylates have represented a promising option to develop self-healing biomaterials. This study aims to develop an electrospray method for the preparation of capsules using poly(methyl methacrylate) (PMMA) as the encapsulant and ethyl 2-cyanoacrylate (EC) as the encapsulate. It also aims to study the effect of the electrospray process parameters on the size and morphology of the capsules. The capsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Moreover, the effects of electrospray process parameters on the size were investigated by Taguchi experimental design. FTIR and TGA approved the presence of both PMMA and EC without further reaction. FE-SEM micrograph demonstrated that an appropriate choice of solvents, utilizing an appropriate PMMA:EC ratio and sufficient PMMA concentration are critical factors to produce capsules dominantly with an intact and spherical morphology. Utilizing various flow rates (0.3-0.5 ml/h) and applied voltage (18-26 kV), capsules were obtained with a 600-1000 nm size range. At constantly applied voltages, the increase in flow rate increased the capsule size up to 40% (ANOVA, p ≤ 0.05), while at constant flow rates, the increase in applied voltage reduced the average capsule size by 3.4-26% (ANOVA, p ≤ 0.05). The results from the Taguchi design represented the significance of solution flow rate, applied voltage, and solution concentration. It was shown that the most effective parameter on the size of capsules is flow rate. This research demonstrated that electrospray can be utilized as a convenient method for the preparation of sub-micron PMMA capsules containing EC. Furthermore, the morphology of the capsules is dominated by solvents, PMMA concentration, and PMMA:EC ratio, while the average size of the capsules can be altered by adjusting the flow rate and applied voltage of the electrospray process.

7.
Int J Biol Macromol ; 263(Pt 1): 130296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382792

RESUMEN

Despite the advantages of topical administration in the treatment of skin diseases, current marketed preparations face the challenge of the skin's barrier effect, leading to low therapeutic effectiveness and undesirable side effects. Hence, in recent years the management of skin wounds, the main morbidity-causing complication in hospital environments, and atopic dermatitis, the most common inflammatory skin disease, has become a great concern. Fortunately, new, more effective, and safer treatments are already under development, with chitosan, starch, silk fibroin, agarose, hyaluronic acid, alginate, collagen, and gelatin having been used for the development of nanoparticles, liposomes, niosomes and/or hydrogels to improve the delivery of several molecules for the treatment of these diseases. Biocompatibility, biodegradability, increased viscosity, controlled drug delivery, increased drug retention in the epidermis, and overall mitigation of adverse effects, contribute to an effective treatment, additionally providing intrinsic antimicrobial and wound healing properties. In this review, some of the most recent success cases of biopolymer-based drug delivery systems as part of nanocarriers, semi-solid hydrogel matrices, or both (hybrid systems), for the management of skin wounds and atopic dermatitis, are critically discussed, including composition and in vitro, ex vivo and in vivo characterization, showing the promise of these external drug delivery systems.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/tratamiento farmacológico , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Biopolímeros/farmacología , Colágeno/farmacología , Hidrogeles/farmacología , Liposomas/farmacología
8.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368115

RESUMEN

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Asunto(s)
Quitosano , Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Quitosano/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/uso terapéutico , Nanopartículas/química , Microambiente Tumoral
9.
Adv Mater ; 36(16): e2313761, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211632

RESUMEN

Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents). However, soft robots with stable performance in diverse organic solvents are not developed yet. In the current research, a non-Euclidean-plate under-liquid soft robot inspired by jellyfish based on phototropic liquid crystal elastomers is fabricated via a 4D-programmable strategy. Specifically, the robot employs a 3D-printed non-Euclidean-plate, designed with Archimedean orientation, which undergoes autonomous deformation to release internal stress when immersed in organic solvents. With the assistance of near-infrared light illumination, the organic solvent inside the robot vaporizes and generates propulsion in the form of bubble streams. The developed NEP-Jelly-inspired soft robot can swim with a high degree of freedom in various organic solvents, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dichloromethane, and trichloromethane, which is not reported before. Besides bionic jellyfish, various aquatic invertebrate-inspired soft robots can potentially be prepared via a similar 4D-programmable strategy.

10.
Adv Sci (Weinh) ; 11(3): e2305697, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997206

RESUMEN

As stretchable conductive materials, ionogels have gained increasing attention. However, it still remains crucial to integrate multiple functions including mechanically robust, room temperature self-healing capacity, facile processing, and recyclability into an ionogel-based device with high potential for applications such as soft robots, electronic skins, and wearable electronics. Herein, inspired by the structure of spider silk, a multilevel hydrogen bonding strategy to effectively produce multi-functional ionogels is proposed with a combination of the desirable properties. The ionogels are synthesized based on N-isopropylacrylamide (NIPAM), N, N-dimethylacrylamide (DMA), and ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). The synergistic hydrogen bonding interactions between PNIPAM chains, PDMA chains, and ILs endow the ionogels with improved mechanical strength along with fast self-healing ability at ambient conditions. Furthermore, the synthesized ionogels show great capability for the continuous fabrication of the ionogel-based fibers using the melt-spinning process. The ionogel fibers exhibit spider-silk-like features with hysteresis behavior, indicating their excellent energy dissipation performance. Moreover, an interwoven network of ionogel fibers with strain and thermal sensing performance can accurately sense the location of objects. In addition, the ionogels show great recyclability and processability into different shapes using 3D printing. This work provides a new strategy to design superior ionogels for diverse applications.

11.
Adv Mater ; 36(13): e2310020, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100738

RESUMEN

Stretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron-conductive fibers, ion-conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self-healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross-linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross-linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU-IG fiber) are prepared. The resultant DOU-IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU-IG fiber shows high healing performance using near-infrared light. Taking advantage of DOU-IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human-machine interaction. It is believed that these DOU-IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics.

12.
Adv Sci (Weinh) ; 10(20): e2207527, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37127894

RESUMEN

Although highly desired, it is difficult to develop mechanically robust and room temperature self-healing ionic liquid-based gels (ionogels), which are very promising for next-generation stretchable electronic devices. Herein, it is discovered that the ionic liquid significantly reduces the reversible reaction rate of disulfide bonds without altering its thermodynamic equilibrium constant via small molecule model reaction and activation energy evolution of the dissociation of the dynamic network. This inhibitory effect would reduce the dissociated units in the dynamic polymeric network, beneficial for the strength of the ionogel. Furthermore, aromatic disulfide bonds with high reversibility are embedded in the polyurethane to endow the ionogel with superior room temperature self-healing performance. Isocyanates with an asymmetric alicyclic structure are chosen to provide optimal exchange efficiencies for the embedded disulfide bonds relative to aromatic and linear aliphatic. Carbonyl-rich poly(ethylene-glycol-adipate) diols are selected as soft segments to provide sufficient interaction sites for ionic liquids to endow the ionogel with high transparency, stretchability, and elasticity. Finally, a self-healing ionogel with a tensile strength of 1.65 ± 0.08 MPa is successfully developed, which is significantly higher than all the reported transparent room temperature self-healing ionogel and its application in a 3D printed stretchable numeric keyboard is exemplified.

13.
Int J Biol Macromol ; 242(Pt 2): 124962, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207752

RESUMEN

Today, tissue engineering strategies need the improvement of advanced hydrogels with biological and mechanical properties similar to natural cartilage for joint regeneration. In this study, an interpenetrating network (IPN) hydrogel composed of gelatin methacrylate (GelMA)/alginate (Algin)/nano-clay (NC) with self-healing ability was developed with particular consideration to balancing of the mechanical properties and biocompatibility of bioink material. Subsequently, the properties of the synthesized nanocomposite IPN, including the chemical structure, rheological behavior, physical properties (i.e. porosity and swelling), mechanical properties, biocompatibility, and self-healing performance were evaluated to investigate the potential application of the developed hydrogel for cartilage tissue engineering (CTE). The synthesized hydrogels showed highly porous structures with dissimilar pore sizes. The results revealed that the NC incorporation improved the properties of GelMA/Algin IPN, such as porosity, and mechanical strength (reached 170 ± 3.5 kPa), while the NC incorporation decreased the degradation (63.8 %) along with retaining biocompatibility. Therefore, the developed hydrogel showed a promising potential for the treatment of tissue defects in cartilage.


Asunto(s)
Gelatina , Metacrilatos , Gelatina/química , Metacrilatos/química , Arcilla , Hidrogeles/química , Alginatos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
Nano Lett ; 23(7): 2927-2937, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926930

RESUMEN

Electrotherapy is a promising tissue repair technique. However, electrotherapy devices are frequently complex and must be placed adjacent to injured tissue, thereby limiting their clinical application. Here, we propose a general strategy to facilitate tissue repair by modulating endogenous electric fields with nonadjacent (approximately 44 mm) wireless electrotherapy through a 3D-printed entirely soft and bioresorbable triboelectric nanogenerator based stimulator, without any electrical accessories, which has biomimetic mechanical properties similar to those of soft tissue. In addition, the feasibility of using the stimulator to construct an electrical double layer with tissue for nonadjacent wireless electrotherapy was demonstrated by skin and muscle injury models. The treated groups showed significantly improved tissue repair compared with the control group. In conclusion, we developed a promising electrotherapy strategy and may inspire next-generation electrotherapy for tissue repair.


Asunto(s)
Implantes Absorbibles , Polímeros , Electricidad , Cicatrización de Heridas , Impresión Tridimensional
15.
Small Methods ; 7(4): e2201604, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36843249

RESUMEN

Conductive fibers are vital for next-generation wearable and implantable electronics. However, the mismatch of mechanical, electrical, and biological properties between existing conductive fibers and human tissues significantly retards their further development. Here, the concept of neuro-like fibers to meet these aforementioned requirements is proposed. A new wet spinning process is established to continuously produce pure gelatin hydrogel fibers. The key is the controllable and rapid gelation of spinning solutions based on the salting-out effect, which is inspired by the Chinese food tofu. The resultant fibers exhibit neuro-like features of soft-while-strong mechanical properties, high ionic conductivity, and superior biological properties including biodegradability, biocompatibility, and edibility, which are crucial for implanted applications but seldom reported. Furthermore, all-weather suitable neuro-like fibers with excellent anti-freezing and water retention properties are developed by introducing glycerol for wearable applications. The optical fiber, transient electronics, and electronic data glove made of neuro-like fibers profoundly demonstrate their potential in biomedical applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Biomimética , Electrónica , Conductividad Eléctrica
16.
Bioact Mater ; 21: 313-323, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36157248

RESUMEN

Hydrogels are emerging as the most promising dressings due to their excellent biocompatibility, extracellular matrix mimicking structure, and drug loading ability. However, existing hydrogel dressings exhibit limited breathability, poor environmental adaptability, potential drug resistance, and limited drug options, which extremely restrict their therapeutic effect and working scenarios. Here, the current research introduces the first paradigm of hydrogel textile dressings based on novel gelatin glycerin hydrogel (glyhydrogel) fibers fabricated by the Hofmeister effect based wet spinning. Benefiting from the unique knitted structure, the textile dressing features excellent breathability (1800 times that of the commercially available 3 M dressing) and stretchability (535.51 ± 38.66%). Furthermore, the glyhydrogel textile dressing can also withstand the extreme temperature of -80 °C, showing the potential for application in subzero environments. Moreover, the introduction of glycerin endows the textile dressing with remarkable antibacterial property and expands the selection of loaded drugs (e.g., clindamycin). The prepared glyhydrogel textile dressing shows an excellent infected wound healing effect with a complete rat skin closure within 14 days. All these functions have not been achievable by traditional hydrogel dressings and provide a new approach for the development of hydrogel dressings.

17.
ACS Nano ; 16(10): 16954-16965, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36125071

RESUMEN

Self-powered information encoding devices (IEDs) have drawn considerable interest owing to their capability to process information without batteries. Next-generation IEDs should be reprogrammable, self-healing, and wearable to satisfy the emerging requirements for multifunctional IEDs; however, such devices have not been demonstrated. Herein, an integrated triboelectric nanogenerator-based IED with the aforementioned features was developed based on the designed light-responsive high-permittivity poly(sebacoyl diglyceride-co-4,4'-azodibenzoyl diglyceride) elastomer (PSeDAE) with a triple-shape-memory effect. The electrical memory feature was achieved through a microscale shape-memory property, enabling spatiotemporal information reprogramming for the IED. Macroscale shape-memory behavior afforded the IED shape-reprogramming ability, yielding wearable and detachable features. The dynamic transesterifications and light-heating groups in the PSeDAE afforded a remotely controlled rearrangement of its cross-linking network, producing the self-healing IED.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Diglicéridos , Suministros de Energía Eléctrica
18.
Adv Mater ; 34(34): e2204543, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35896884

RESUMEN

Flammability is a great challenge in the fields of electronics. The emergence of triboelectric nanogenerators (TENGs) provides a safe way to harvest environmentalally friendly energy and convert it into more secure power sources. Especially, polymer-based TENGs significantly accelerate the practical application of self-powered flexible electronics. However, most of the existing polymeric materials for TENGs are easily flammable and melt, dripping, in a fire scenario, and cannot be reused after combustion, which greatly limits the application of TENGs under extreme conditions. Herein, a fire-resistant TENG based on all-aromatic liquid crystalline poly(aryl ether ester) (LCPAEE ) synthesized via simple and efficient one-pot melt polycondensation is reported. The highly rigid main chain of LCPAEE endows the LCP-TENG with outstanding anti-dripping, temperature- and fire-resistance. The resultant LCP-TENG exhibits excellent electrical output performance, which is attributed to the high dielectric constant (ε' = 4.8) and fibrous-structured morphology of LCPAEE . The device can maintain over 65% of open-circuit voltage even after 16 s combustion (≈520 °C). Consequently, this work offers a novel strategy for tailoring the TENGs toward a secure power generator and electronics with fire hazard reduction, and potential application in firefighting, personal protection, and other extreme temperature environments.

19.
Adv Sci (Weinh) ; 9(13): e2105146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35212474

RESUMEN

Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Electrónica , Geles , Humanos , Polímeros
20.
ACS Omega ; 6(46): 31147-31153, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34841156

RESUMEN

In order to study the release of cerium nitrate in a self-healing epoxy-based coating, poly (urea-formaldehyde) (PUF) microcapsules containing cerium nitrate were synthesized. The effects of healing agent concentration and weight percent of microcapsules in the epoxy resin were studied through the incorporation of microcapsules within an epoxy-based coating. The prepared microcapsules were characterized using thermogravimetric analysis and Fourier transform infrared spectroscopy and confirmed the successful encapsulation of cerium nitrate within PUF capsules. The self-healing performance of the prepared epoxy coating was investigated in 0.6 M NaCl solution using electrochemical impedance spectroscopy (EIS) tests. The EIS results indicated the successful release of encapsulated cerium nitrate from PUF microcapsules once the damage occurred in the epoxy coating, which led to effective self-healing of the epoxy-based coating. The presence of chlorine and cerium ions in the solution led to the precipitation of cerium hydroxides and oxides in the scratched area as a passive layer which hindered the corrosion in the damaged area. In addition, the EIS results showed that the healing performance of the coatings depends on the weight percent of microcapsules and the concentration of the self-healing agent. The highest self-healing performance was achieved for the maximum amount of microcapsule incorporation (10 wt %), while the increase in the microcapsule percent led to a decrease in the adhesion of the coating to the substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...