Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 59(8): 5616-5625, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32271559

RESUMEN

A series of acenaphthene species with a diisopropylphosphino group and a variety of bismuth functionalities in the peri positions were synthesized and fully characterized, including single-crystal X-ray diffraction. The majority of the reported species feature a relatively rare interpnictogen P-Bi bond. The series includes the phosphine-bismuthine Acenap(PiPr2)(BiPh2) (2; Acenap = acenaphthene-5,6-diyl), which was subjected to a fluorodearylation reaction to produce Acenap(PiPr2)(BiPhX) (5-8 and 10; X = BF4-, Cl, Br, I, SPh), displaying varying degrees of ionicity. The geminally bis(acenaphthyl)-substituted [Acenap(PiPr2)]2BiPh (3) shows a large through-space coupling of 17.8 Hz, formally 8TSJPP. Coupling deformation density calculations confirm the double through-space coupling pathway, in which the P and Bi lone pairs mediate communication between the two 31P nuclei. Several synthetic routes toward the phosphine-diiodobismuthine Acenap(PiPr2)(BiI2) (9) have been investigated; however, the purity of this, surprisingly thermally stable potential synthon, remains poor.

2.
Inorg Chem ; 57(6): 3387-3398, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29517228

RESUMEN

A series of representative late d-block metal complexes bearing a rigid bis(phosphine) ligand, iPr2P-Ace-PPh2 (L, Ace = acenaphthene-5,6-diyl), was prepared and fully characterized by various techniques, including multinuclear NMR and single-crystal X-ray diffraction. The heteroleptic nature of the peri-substituted ligand L allows for the direct observation of the JPP couplings in the 31P{1H} NMR spectra. Magnitudes of JPP are correlated with the identity and geometry of the metal and the distortions of the ligand L. The forced overlap of the phosphine lone pairs due to the constraints imposed by the rigid acenaphthene skeleton in L results in a large 4 JPP of 180 Hz. Sequestration of the lone pairs, either via oxidation of the phosphine or via metal chelation, results in distinct changes in the magnitude of JPP. For tetrahedral d10 complexes ([LMCl2], M = Zn, Cd, Hg), the JPP is comparable to or larger than (193-309 Hz) that in free ligand L, although the P···P separation in these complexes is increased by ca. 0.4 Å (compare to free ligand L). The magnitude of JPP diminishes to 26-117 Hz in square planar d8 complexes ([LMX2], M = Ni, Pd, Pt; X = Cl, Br) and the octahedral Mo0 complex ([LMo(CO)4], 33 Hz). Coupling deformation density calculations indicate the through-space interaction dominates in free L, while in metal complexes the main coupling pathway is via the metal atom.

3.
Inorg Chem ; 55(14): 7117-25, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27341540

RESUMEN

Tris(acenaphthyl)- and bis(acenaphthyl)-substituted pnictogens (iPr2P-Ace)3E (2-4) (E = As, Sb, or Bi; Ace = acenaphthene-5,6-diyl) and (iPr2P-Ace)2EPh (5 and 6) (E = As or Sb) were synthesized and fully characterized by multinuclear nuclear magnetic resonance (NMR), high-resolution mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. The molecules adopt propeller-like geometries with the restricted rotational freedom of the sterically encumbered iPr2P-Ace groups resulting in distinct NMR features. In the tris(acenaphthyl) species (2-4), the phosphorus atoms are isochronous in the (31)P{(1)H} NMR spectra, and the rotation of the three acenaphthyl moieties around the E-Cipso bond is locked. On the other hand, the bis(acenaphthyl) species show a fluxional behavior, resulting in an AX to A2 spin system transition in the (31)P{(1)H} variable-temperature NMR spectra. This allowed elucidation of remarkable through-space couplings ((8TS)JPP) of 11.5 Hz (for 5) and 25.8 Hz (for 6) at low temperatures. In addition, detailed line shape analysis of the thermodynamic parameters of the restricted rotation of the "propeller blades" in 5 was performed in the intermediate temperature region and also at coalescence. The lone pairs on the pnictogen atoms in 2-6 are oriented such that they form a bowl-shaped area that is somehow buried within the molecule.

4.
Dalton Trans ; 45(15): 6348-51, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26988270

RESUMEN

A convenient synthesis route to 2,2'-binaphtho[1,8-de][1,3,2]di-thiaphosphinine () was found. Its stable radical cation 3˙(+) was accessed easily through one-electron oxidation with NOBF4.

5.
Dalton Trans ; 44(38): 16758-66, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26335808

RESUMEN

The synthesis of a range of rhodium(iii) and iridium(iii) half sandwich complexes with aryl dithiolato ligands of varying geometry and flexibility are reported. These include dinuclear [Cp*M(S-R-S)]2 complexes 3b and 4b, M = Rh, Ir; S-R-S = naphthalene-1,8-dithiolate (b) and four dinuclear complexes bearing bridging dithiolate ligands [(Cp*M)2(µ2-Cl)(µ2-S-R-S)]Cl 3c, 4c, 5b, 6b, M = Rh, Ir; S-R-S = naphthalene-1,8-dithiolate (b) or acenaphthene-5,6-dithiolate (c). The introduction of a less rigid biphenyl dithiolate backbone resulted in the tetranuclear dicationic complex [(Cp*Rh)4(S-R-S)3]Cl2 (3d), S-R-S = biphenyl-2,2'-dithiolate (d) with dithiolate ligands in two different bridging modes. All new complexes were fully characterised by multinuclear NMR, IR, Raman and MS spectroscopy and single crystal X-ray diffraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...