Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 184(6): 1701-1709, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572689

RESUMEN

Inorganic arsenic (iAs) in 13 store-bought edible seaweed samples and 34 dried kelp (Laminaria digitata) samples was determined by a newly developed, field-deployable method (FDM) with the aid of a field test kit for arsenic in water. Results from the FDM were compared to results from speciation analysis achieved by using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The FDM consisted of a simple extraction method using diluted HNO3 to quantitatively extract iAs without decomposing the organoarsenicals to iAs followed by the selective volatilisation of iAs as arsine (AsH3) and subsequent chemo-trapping on a filter paper soaked in mercury bromide (HgBr2) solution. Method optimization with a sub-set of samples showed 80-94% iAs recovery with the FDM with no matrix effect from organo-arsenic species in the form of dimethylarsinic acid (DMA) on the iAs concentration. The method displayed good reproducibility with an average error of ±19% and validation by HPLC-ICP-MS showed that the results from the FDM were comparable (slope = 1.03, R2 = 0.70) to those from speciation analysis with no bias. The FDM can be conducted within an hour and the observed limit of quantification was around 0.05 mg kg-1 (dry weight). This method is well suited for on-site monitoring of iAs in seaweed before it is harvested and can thus be recommended for use as a screening method for iAs in seaweed. Graphical abstractScreening seaweed for their inorganic arsenic concentration within one hour without bias has been made possible in the field by using a field deployable arsenic kit. Its accuracy and precision was compared to HPLC-ICPMS.


Asunto(s)
Arsenicales/análisis , Algas Marinas/química , Arsenicales/química , Cromatografía Líquida de Alta Presión/métodos , Mezclas Complejas/análisis , Contaminación de Alimentos/análisis , Laminaria/química , Espectrometría de Masas/métodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Agua
2.
Acta Crystallogr D Struct Biol ; 73(Pt 3): 246-255, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28291760

RESUMEN

The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.


Asunto(s)
Acústica/instrumentación , Cristalización/instrumentación , Proteínas/química , Cristalización/economía , Cristalización/métodos , Cristalografía por Rayos X , Diseño de Equipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA