Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 60: 58-64, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27519946

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common genetic abnormality known to predispose to acute hemolytic anemia (AHA), which can be triggered by certain drugs or infection. However, the commonest trigger is fava beans (Vicia faba) ingestion, causing AHA (favism), which may be life-threatening especially in children. G6PD deficiency is genetically highly heterogeneous, as nearly 200 different mutations have been observed. We have investigated the hematological features of acute favism in the Palestinian Gaza community that is characterized by the polymorphic coexistence of three different G6PD deficiency genes (G6PD A-, G6PD Cairo, G6PD Med). We have found by comparison to the general population (485 adults and 466 newborns) that children with favism, in terms of relative frequency, G6PD A- was under-represented, whereas G6PD Med was over-represented. We also found that the severity of anemia was significantly greater with G6PD Med and G6PD Cairo than with G6PD A-; and with G6PD Cairo, compared to the other two variants, there was greater hyperbilirubinemia, as well as persistence of mild anemia and reticulocytosis for as long as 4months after recovery from favism. This is the first report determining a differential impact of different G6PD mutations on the clinical features of favism in the same population and the same environment.


Asunto(s)
Favismo/genética , Variación Genética , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Anemia Hemolítica/genética , Anemia Hemolítica/patología , Árabes , Recolección de Muestras de Sangre , Niño , Preescolar , Femenino , Glucosafosfato Deshidrogenasa , Deficiencia de Glucosafosfato Deshidrogenasa/patología , Humanos , Masculino , Análisis de Secuencia de ADN
2.
Mol Genet Metab ; 107(1-2): 31-6, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22841515

RESUMEN

BACKGROUND: A need exists to expand the characterization of tetrahydrobiopterin (BH(4)) responsiveness in patients with phenylketonuria (PKU), beyond simply evaluating change in blood phenylalanine concentrations. The clinical interpretation of BH(4) responsiveness should be evaluated within the context of phenylalanine hydroxylase (PAH) genotype. AIM: This investigation seeks to use a modified version of a previously developed PAH genotype severity tool, the assigned value (AV) sum, to assess the molecular basis of responsiveness in a clinical cohort and to explore the tool's ability to differentiate BH(4) responsive groups. METHODS: BH(4) response was previously clinically classified in 58 patients with PKU, with three response groups emerging: definitive responders, provisional responders, and non-responders. Provisional responders represented a clinically ambiguous group, with an initial decrease in plasma phenylalanine concentrations, but limited ability to improve dietary phenylalanine tolerance. In this retrospective analysis, mutations in the PAH gene were identified in each patient. PAH genotype was characterized through the AV sum approach, in which each mutation is given an AV of 1, 2, 4, or 8; the sum of both mutations' AV corresponds to genotype severity, with a lower number representing a more severe phenotype. An AV sum cutoff of 2 (indicative of the most severe genotypes) was used to dichotomize patients and predict BH(4) responsiveness. Provisional responders were classified with the definitive responders then the non-responders to see with which group they best aligned. RESULTS: In 17/19 definitive responders, at least one mutation was mild or moderate in severity (AV sum>2). In contrast, 7/9 provisional responders carried two severe or null mutations (AV sum=2), suggesting little molecular basis for responsiveness. Non-responders represent a heterogeneous group with 15/25 patients carrying two severe mutations (AV sum=2), 5/25 patients carrying one moderate or mild mutation in combination with a severe or null mutation (AV sum>2), and the remaining five patients carrying an uncharacterized mutation in combination with a severe mutation. Predictive sensitivity of the AV sum was maximized (89.5% vs. 67.9%) with limited detriment to specificity (79.4% vs. 80.0%), by classifying provisional responders with the non-responders rather than with the definitive responders. CONCLUSIONS: In our clinical cohort, the AV sum tool was able to identify definitive responders with a high degree of sensitivity. As demonstrated by both the provisional responder group and the substantial number of non-responders with AV sums>2, a potential exists for misclassification when BH(4) response is determined by relying solely on change in plasma phenylalanine concentrations. PAH genotype should be incorporated in the clinical evaluation of BH(4) responsiveness.


Asunto(s)
Genotipo , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Biopterinas/análogos & derivados , Biopterinas/uso terapéutico , Niño , Preescolar , Humanos , Mutación , Fenilalanina/sangre , Fenilcetonurias/tratamiento farmacológico , Pronóstico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA