Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Nat Commun ; 15(1): 3942, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729933

RESUMEN

In clinical oncology, many diagnostic tasks rely on the identification of cells in histopathology images. While supervised machine learning techniques necessitate the need for labels, providing manual cell annotations is time-consuming. In this paper, we propose a self-supervised framework (enVironment-aware cOntrastive cell represenTation learning: VOLTA) for cell representation learning in histopathology images using a technique that accounts for the cell's mutual relationship with its environment. We subject our model to extensive experiments on data collected from multiple institutions comprising over 800,000 cells and six cancer types. To showcase the potential of our proposed framework, we apply VOLTA to ovarian and endometrial cancers and demonstrate that our cell representations can be utilized to identify the known histotypes of ovarian cancer and provide insights that link histopathology and molecular subtypes of endometrial cancer. Unlike supervised models, we provide a framework that can empower discoveries without any annotation data, even in situations where sample sizes are limited.


Asunto(s)
Neoplasias Endometriales , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Ováricas/patología , Aprendizaje Automático , Aprendizaje Automático Supervisado , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748789

RESUMEN

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Neoplasias Ováricas , Transducción de Señal , Humanos , Femenino , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Interferón Tipo I/metabolismo , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Clasificación del Tumor , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
3.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596311

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

4.
J Clin Oncol ; 42(9): 1077-1087, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113419

RESUMEN

PURPOSE: About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS: We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS: Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION: We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/tratamiento farmacológico , Microambiente Tumoral , Ecosistema , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Recurrencia
5.
Clin Cancer Res ; 29(17): 3471-3483, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339172

RESUMEN

PURPOSE: Endometrioid ovarian carcinoma (ENOC) is the second most-common type of ovarian carcinoma, comprising 10%-20% of cases. Recently, the study of ENOC has benefitted from comparisons to endometrial carcinomas including defining ENOC with four prognostic molecular subtypes. Each subtype suggests differential mechanisms of progression, although tumor-initiating events remain elusive. There is evidence that the ovarian microenvironment may be critical to early lesion establishment and progression. However, while immune infiltrates have been well studied in high-grade serous ovarian carcinoma, studies in ENOC are limited. EXPERIMENTAL DESIGN: We report on 210 ENOC, with clinical follow-up and molecular subtype annotation. Using multiplex IHC and immunofluorescence, we examine the prevalence of T-cell lineage, B-cell lineage, macrophages, and populations with programmed cell death protein 1 or programmed death-ligand 1 across subtypes of ENOC. RESULTS: Immune cell infiltrates in tumor epithelium and stroma showed higher densities in ENOC subtypes with known high mutation burden (POLEmut and MMRd). While molecular subtypes were prognostically significant, immune infiltrates were not (overall survival P > 0.2). Analysis by molecular subtype revealed that immune cell density was prognostically significant in only the no specific molecular profile (NSMP) subtype, where immune infiltrates lacking B cells (TILB minus) had inferior outcome (disease-specific survival: HR, 4.0; 95% confidence interval, 1.1-14.7; P < 0.05). Similar to endometrial carcinomas, molecular subtype stratification was generally superior to immune response in predicting outcomes. CONCLUSIONS: Subtype stratification is critical for better understanding of ENOC, in particular the distribution and prognostic significance of immune cell infiltrates. The role of B cells in the immune response within NSMP tumors warrants further study.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Biomarcadores de Tumor/genética , Carcinoma Endometrioide/patología , Neoplasias Ováricas/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Carcinoma Epitelial de Ovario , Microambiente Tumoral
6.
Cancer Res Commun ; 3(3): 404-419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36911097

RESUMEN

While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance: Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.


Asunto(s)
Neoplasias del Colon , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Células Mieloides , Transducción de Señal , Linfocitos Infiltrantes de Tumor , Neoplasias del Colon/metabolismo
7.
Cancer Cell ; 41(3): 466-489, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917951

RESUMEN

Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Linfocitos B , Linfocitos Infiltrantes de Tumor , Linfocitos T , Pronóstico , Microambiente Tumoral
8.
Nat Genet ; 55(3): 437-450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36849657

RESUMEN

High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Multiómica , Carcinoma Epitelial de Ovario , Recombinación Homóloga/genética , Cistadenocarcinoma Seroso/genética
9.
Gynecol Oncol ; 168: 23-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368129

RESUMEN

OBJECTIVE: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION: In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.


Asunto(s)
Antígeno B7-H1 , Neoplasias Ováricas , Humanos , Femenino , Antígeno B7-H1/genética , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/tratamiento farmacológico , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead/uso terapéutico , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral
10.
Front Immunol ; 14: 1307873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318505

RESUMEN

Background: For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods: We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results: We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions: Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Linfocitos T/patología , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Células Asesinas Naturales/patología , Macrófagos/patología
11.
Front Oncol ; 13: 1286754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188285

RESUMEN

Introduction: Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods: In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results: We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion: We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.

12.
Nat Genet ; 54(12): 1853-1864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456881

RESUMEN

Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.


Asunto(s)
Genómica , Neoplasias Ováricas , Femenino , Humanos , Sobrevivientes , Neoplasias Ováricas/genética
13.
Melanoma Res ; 32(4): 278-285, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726793

RESUMEN

Uveal melanoma is the most common intraocular malignancy and has a poor prognosis compared to other melanoma subtypes with a median overall survival of 6-10 months. With immune checkpoint inhibitor therapy, either PD-1 inhibitor alone or combination ipilimumab/nivolumab (anti-CTLA-4/anti-PD-1), responses are rare and often not durable. We present a case report of a now 66-year-old woman with diffuse metastatic uveal melanoma previously treated with a combination of ipilimumab/nivolumab, followed by maintenance nivolumab. Almost complete resolution of all sites of metastatic disease was observed except for one liver metastasis which regressed partially on immunotherapy. Notably, the patient had a significantly elevated BMI and developed widespread vitiligo on treatment. Whole-genome and transcriptome analysis was performed on the residual liver biopsy and molecular markers that may have contributed to the exceptional response were investigated. Several alterations were observed in genes involved in T-cell responses. Estimates of tumour infiltrating immune cells indicated a high level of plasma cells compared to other uveal melanoma cases, a finding previously associated with indolent disease. The patient also carried several germline SNPs that may have contributed to her treatment response as well as widespread vitiligo. Whole-genome and transcriptome sequencing have provided insight into potential molecular underpinnings of an exceptional treatment response in a tumour type typically associated with poor prognosis. Immunological findings suggest a role for plasma cells in the tumour microenvironment. Elevated BMI and the development of vitiligo may be clinically relevant factors for predicting response to immune checkpoint inhibitor therapy, warranting further studies in patients with uveal melanoma.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Vitíligo , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Femenino , Genómica , Humanos , Inhibidores de Puntos de Control Inmunológico , Ipilimumab/farmacología , Ipilimumab/uso terapéutico , Melanoma/patología , Nivolumab/farmacología , Nivolumab/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Microambiente Tumoral , Neoplasias de la Úvea
14.
Nat Rev Immunol ; 22(12): 765-775, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35513493

RESUMEN

With the burgeoning use of immune-based treatments for cancer, never has there been a greater need to understand the tumour microenvironment within which immune cells function and how it can be perturbed to inhibit tumour growth. Yet, current challenges in identifying optimal combinations of immunotherapies and engineering new cell-based therapies highlight the limitations of conventional paradigms for the study of the tumour microenvironment. Ecology has a rich history of studying predator-prey dynamics to discern factors that drive prey to extinction. Here, we describe the basic tenets of predator-prey theory as applied to 'predation' by immune cells and the 'extinction' of cancer cells. Our synthesis reveals fundamental mechanisms by which antitumour immunity might fail in sometimes counterintuitive ways and provides a fresh yet evidence-based framework to better understand and therapeutically target the immune-cancer interface.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Humanos , Conducta Predatoria , Inmunoterapia
16.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35380993

RESUMEN

PRAME is a prominent member of the cancer testis antigen family of proteins, which triggers autologous T cell-mediated immune responses. Integrative genomic analysis in diffuse large B cell lymphoma (DLBCL) uncovered recurrent and highly focal deletions of 22q11.22, including the PRAME gene, which were associated with poor outcome. PRAME-deleted tumors showed cytotoxic T cell immune escape and were associated with cold tumor microenvironments. In addition, PRAME downmodulation was strongly associated with somatic EZH2 Y641 mutations in DLBCL. In turn, PRC2-regulated genes were repressed in isogenic PRAME-KO lymphoma cell lines, and PRAME was found to directly interact with EZH2 as a negative regulator. EZH2 inhibition with EPZ-6438 abrogated these extrinsic and intrinsic effects, leading to PRAME expression and microenvironment restoration in vivo. Our data highlight multiple functions of PRAME during lymphomagenesis and provide a preclinical rationale for synergistic therapies combining epigenetic reprogramming with PRAME-targeted therapies.


Asunto(s)
Antígenos de Neoplasias , Linfoma de Células B Grandes Difuso , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/terapia , Microambiente Tumoral/genética
17.
Nat Rev Cancer ; 22(7): 414-430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393541

RESUMEN

Although immunotherapy research to date has focused largely on T cells, there is mounting evidence that tumour-infiltrating B cells and plasma cells (collectively referred to as tumour-infiltrating B lymphocytes (TIL-Bs)) have a crucial, synergistic role in tumour control. In many cancers, TIL-Bs have demonstrated strong predictive and prognostic significance in the context of both standard treatments and immune checkpoint blockade, offering the prospect of new therapeutic opportunities that leverage their unique immunological properties. Drawing insights from autoimmunity, we review the molecular phenotypes, architectural contexts, antigen specificities, effector mechanisms and regulatory pathways relevant to TIL-Bs in human cancer. Although the field is young, the emerging picture is that TIL-Bs promote antitumour immunity through their unique mode of antigen presentation to T cells; their role in assembling and perpetuating immunologically 'hot' tumour microenvironments involving T cells, myeloid cells and natural killer cells; and their potential to combat immune editing and tumour heterogeneity through the easing of self-tolerance mechanisms. We end by discussing the most promising approaches to enhance TIL-B responses in concert with other immune cell subsets to extend the reach, potency and durability of cancer immunotherapy.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias , Linfocitos B/patología , Humanos , Inmunoterapia/métodos , Neoplasias/patología , Microambiente Tumoral
18.
Cancer Cell ; 40(4): 356-358, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35413269

RESUMEN

The immune system employs complex tolerance mechanisms in order to avoid harmful autoimmunity, yet autoantibodies are frequently observed in cancer. In a paper in Cell, Mazor et al. report that autoantibodies produced by tumor-infiltrating B cells in human ovarian cancer frequently recognize the self-protein matrix metalloproteinase 14 (MMP14) through two distinct mechanisms of tolerance disruption.


Asunto(s)
Linfocitos B , Microambiente Tumoral , Autoanticuerpos , Autoinmunidad , Humanos , Tolerancia Inmunológica
19.
Front Immunol ; 13: 1074740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601119

RESUMEN

Access to commercial CD19 CAR-T cells remains limited even in wealthy countries like Canada due to clinical, logistical, and financial barriers related to centrally manufactured products. We created a non-commercial academic platform for end-to-end manufacturing of CAR-T cells within Canada's publicly funded healthcare system. We report initial results from a single-arm, open-label study to determine the safety and efficacy of in-house manufactured CD19 CAR-T cells (entitled CLIC-1901) in participants with relapsed/refractory CD19 positive hematologic malignancies. Using a GMP compliant semi-automated, closed process on the Miltenyi Prodigy, T cells were transduced with lentiviral vector bearing a 4-1BB anti-CD19 CAR transgene and expanded. Participants underwent lymphodepletion with fludarabine and cyclophosphamide, followed by infusion of non-cryopreserved CAR-T cells. Thirty participants with non-Hodgkin's lymphoma (n=25) or acute lymphoblastic leukemia (n=5) were infused with CLIC-1901: 21 males (70%), median age 66 (range 18-75). Time from enrollment to CLIC-1901 infusion was a median of 20 days (range 15-48). The median CLIC-1901 dose infused was 2.3 × 106 CAR-T cells/kg (range 0.13-3.6 × 106/kg). Toxicity included ≥ grade 3 cytokine release syndrome (n=2) and neurotoxicity (n=1). Median follow-up was 6.5 months. Overall response rate at day 28 was 76.7%. Median progression-free and overall survival was 6 months (95%CI 3-not estimable) and 11 months (95% 6.6-not estimable), respectively. This is the first trial of in-house manufactured CAR-T cells in Canada and demonstrates that administering fresh CLIC-1901 product is fast, safe, and efficacious. Our experience may provide helpful guidance for other jurisdictions seeking to create feasible and sustainable CAR-T cell programs in research-oriented yet resource-constrained settings. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03765177, identifier NCT03765177.


Asunto(s)
Neoplasias Hematológicas , Linfoma no Hodgkin , Masculino , Humanos , Anciano , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ciclofosfamida , Neoplasias Hematológicas/terapia , Recurrencia , Antígenos CD19
20.
Cancer Epidemiol Biomarkers Prev ; 31(2): 443-452, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34789471

RESUMEN

BACKGROUND: There is suggestive evidence that inflammation is related to ovarian cancer survival. However, more research is needed to identify inflammation-related factors that are associated with ovarian cancer survival and to determine their combined effects. METHODS: This analysis used pooled data on 8,147 women with invasive epithelial ovarian cancer from the Ovarian Cancer Association Consortium. The prediagnosis inflammation-related exposures of interest included alcohol use; aspirin use; other nonsteroidal anti-inflammatory drug use; body mass index; environmental tobacco smoke exposure; history of pelvic inflammatory disease, polycystic ovarian syndrome, and endometriosis; menopausal hormone therapy use; physical inactivity; smoking status; and talc use. Using Cox proportional hazards models, the relationship between each exposure and survival was assessed in 50% of the data. A weighted inflammation-related risk score (IRRS) was developed, and its association with survival was assessed using Cox proportional hazards models in the remaining 50% of the data. RESULTS: There was a statistically significant trend of increasing risk of death per quartile of the IRRS [HR = 1.09; 95% confidence interval (CI), 1.03-1.14]. Women in the upper quartile of the IRRS had a 31% higher death rate compared with the lowest quartile (95% CI, 1.11-1.54). CONCLUSIONS: A higher prediagnosis IRRS was associated with an increased mortality risk after an ovarian cancer diagnosis. Further investigation is warranted to evaluate whether postdiagnosis exposures are also associated with survival. IMPACT: Given that pre- and postdiagnosis exposures are often correlated and many are modifiable, our study results can ultimately motivate the development of behavioral recommendations to enhance survival among patients with ovarian cancer.


Asunto(s)
Carcinoma Epitelial de Ovario/mortalidad , Inflamación/epidemiología , Neoplasias Ováricas/mortalidad , Anciano , Femenino , Conductas Relacionadas con la Salud , Humanos , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...