Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 630(8015): 54-58, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648852

RESUMEN

Large-scale outflows driven by supermassive black holes are thought to have a fundamental role in suppressing star formation in massive galaxies. However, direct observational evidence for this hypothesis is still lacking, particularly in the young universe where star-formation quenching is remarkably rapid1-3, thus requiring effective removal of gas4 as opposed to slow gas heating5,6. Although outflows of ionized gas are frequently detected in massive distant galaxies7, the amount of ejected mass is too small to be able to suppress star formation8,9. Gas ejection is expected to be more efficient in the neutral and molecular phases10, but at high redshift these have only been observed in starbursts and quasars11,12. Here we report JWST spectroscopy of a massive galaxy experiencing rapid quenching at a redshift of 2.445. We detect a weak outflow of ionized gas and a powerful outflow of neutral gas, with a mass outflow rate that is sufficient to quench the star formation. Neither X-ray nor radio activity is detected; however, the presence of a supermassive black hole is suggested by the properties of the ionized gas emission lines. We thus conclude that supermassive black holes are able to rapidly suppress star formation in massive galaxies by efficiently ejecting neutral gas.

3.
Nature ; 626(8001): 975-978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418911

RESUMEN

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang1-3, has been a matter of debate4. Some models suggest that high ionizing emissivity and escape fractions (fesc) from quasars support their role in driving cosmic reionization5,6. Others propose that the high fesc values from bright galaxies generate sufficient ionizing radiation to drive this process7. Finally, a few studies suggest that the number density of faint galaxies, when combined with a stellar-mass-dependent model of ionizing efficiency and fesc, can effectively dominate cosmic reionization8,9. However, so far, comprehensive spectroscopic studies of low-mass galaxies have not been done because of their extreme faintness. Here we report an analysis of eight ultra-faint galaxies (in a very small field) during the epoch of reionization with absolute magnitudes between MUV ≈ -17 mag and -15 mag (down to 0.005L⋆ (refs. 10,11)). We find that faint galaxies during the first thousand million years of the Universe produce ionizing photons with log[ξion (Hz erg-1)] = 25.80 ± 0.14, a factor of 4 higher than commonly assumed values12. If this field is representative of the large-scale distribution of faint galaxies, the rate of ionizing photons exceeds that needed for reionization, even for escape fractions of the order of 5%.

4.
Nature ; 627(8002): 59-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232944

RESUMEN

Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1-3. Models consider different seeding and accretion scenarios4-7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [NeIV]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm-3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800-1,000 km s-1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log ( M BH / M ⊙ ) = 6.2 ± 0.3 , accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.

5.
Nature ; 597(7877): 485-488, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552255

RESUMEN

Star formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old1. Very low amounts of molecular gas seem to be responsible for this, at least in some cases2-7, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases8-11. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly2-7, or stacked emission with its problems of averaging8,9. Here we report 1.3 mm observations of dust emission from 6 strongly lensed galaxies where star formation has been quenched, with magnifications of up to a factor of 30. Four of the six galaxies are undetected in dust emission, with an estimated upper limit on the dust mass of 0.0001 times the stellar mass, and by proxy (assuming a Milky Way molecular gas-to-dust ratio) 0.01 times the stellar mass in molecular gas. This is two orders of magnitude less molecular gas per unit stellar mass than seen in star forming galaxies at similar redshifts12-14. It remains difficult to extrapolate from these small samples, but these observations establish that gas depletion is responsible for a cessation of star formation in some fraction of high-redshift galaxies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...