Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Microorganisms ; 11(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37317139

RESUMEN

Deep sequencing has revealed that the 16S rRNA gene composition of the human microbiome can vary between populations. However, when existing data are insufficient to address the desired study questions due to limited sample sizes, Dirichlet mixture modeling (DMM) can simulate 16S rRNA gene predictions from experimental microbiome data. We examined the extent to which simulated 16S rRNA gene microbiome data can accurately reflect the diversity within that identified from experimental data and calculate the power. Even when experimental and simulated datasets differed by less than 10%, simulation by DMM consistently overestimates power, except when using only highly discriminating taxa. Admixtures of DMM with experimental data performed poorly compared to pure simulation and did not show the same correlation with experimental data p-value and power values. While multiple replications of random sampling remain the favored method of determining the power, when the estimated sample size required to achieve a certain power exceeds the sample number, then simulated samples based on DMM can be used. We introduce an R-Package, MPrESS, to assist in power calculation and sample size estimation for a 16S rRNA gene microbiome dataset to detect a difference between populations. MPrESS can be downloaded from GitHub.

2.
PeerJ ; 10: e14449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518275

RESUMEN

Background: Intra-continentally, vaginal microbiome signatures are reported to be significantly different between Black and Caucasian women, with women of African ancestry having the less well defined heterogenous bacterial community state type (CST) deficient of Lactobacillus species (CST IV). The objective of this study was to characterize the vaginal microbiomes across a more diverse intercontinental group of women (N = 151) of different ethnicities (African American, African Kenyan, Afro-Caribbean, Asian Indonesian and Caucasian German) using 16S rRNA gene sequence analysis to determine their structures and offer a comprehensive description of the non-Lactobacillus dominant CSTs and subtypes. Results: In this study, the bacterial composition of the vaginal microbiomes differed significantly among the ethnic groups. Lactobacillus spp. (L. crispatus and L. iners) dominated the vaginal microbiomes in African American women (91.8%) compared to European (German, 42.4%), Asian (Indonesian, 45.0%), African (Kenyan, 34.4%) and Afro-Caribbean (26.1%) women. Expanding on CST classification, three subtypes of CST IV (CST IV-A, IV-B and IV-C) (N = 56, 37.1%) and four additional CSTs were described: CST VI Gardnerella vaginalis-dominant (N = 6, 21.8%); CST VII (Prevotella-dominant, N = 1, 0.66%); CST VIII (N = 9, 5.96%), resembling aerobic vaginitis, was differentiated by a high proportion of taxa such as Enterococcus, Streptococcus and Staphylococcus (relative abundance [RA] > 50%) and CST IX (N = 7, 4.64%) dominated by genera other than Lactobacillus, Gardnerella or Prevotella (e.g., Bifidobacterium breve and Anaerococcus vaginalis). Within the vaginal microbiomes, 32 "taxa with high pathogenic potential" (THPP) were identified. Collectively, THPP (mean RA ~5.24%) negatively correlated (rs = -0.68, p < 2.2e-16) with Lactobacillus species but not significantly with Gardnerella/Prevotella spp. combined (r = -0.13, p = 0.1). However, at the individual level, Mycoplasma hominis exhibited moderate positive correlations with Gardnerella (r = 0.46, p = 2.6e-09) and Prevotella spp. (r = 0.47, p = 1.4e-09). Conclusions: These findings while supporting the idea that vaginal microbiomes vary with ethnicity, also suggest that CSTs are more wide-ranging and not exclusive to any particular ethnic group. This study offers additional insight into the structure of the vaginal microbiome and contributes to the description and subcategorization of non-Lactobacillus-dominated CSTs.


Asunto(s)
Microbiota , Vagina , Femenino , Humanos , Masculino , ARN Ribosómico 16S/genética , Kenia , Vagina/microbiología , Microbiota/genética , Lactobacillus/genética , Bacterias/genética , Gardnerella/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-33818222

RESUMEN

Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is incurable and ultimately fatal. Few therapeutic options are available to patients. In this study, we explored differences in microbiome composition associated with ALS. Methods: We compared the gut microbiome and inflammatory marker profiles of ALS patients (n = 10) to those of their spouses (n = 10). Gut microbiome profiles were determined by 16S rRNA gene sequencing. Results: The gut microbial communities of the ALS patients were more diverse and were deficient in Prevotella spp. compared with those of their spouses. In contrast, healthy couples (n = 10 couples of the opposite sex) recruited from the same geographic region as the patient population did not exhibit these differences. Stool and plasma inflammatory markers were similar between ALS patients and their spouses. Predictive analysis of microbial enzymes revealed that ALS patients had decreased activity in several metabolic pathways, including carbon metabolism, butyrate metabolism, and systems involving histidine kinase and response regulators. Conclusions: ALS patients exhibit differences in their gut microbial communities compared with spouse controls. Our findings suggest that modifying the gut microbiome, such as via amelioration of Prevotella spp. deficiency, and/or altering butyrate metabolism may have translational value for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética , Esposos
4.
Pediatr Res ; 91(1): 154-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33824448

RESUMEN

BACKGROUND: Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. METHODS: This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. RESULTS: Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). CONCLUSIONS: Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. IMPACT: Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant's gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Niño , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Estudios Prospectivos
5.
PNAS Nexus ; 1(5): pgac239, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712365

RESUMEN

Dental caries is a microbial disease and the most common chronic health condition, affecting nearly 3.5 billion people worldwide. In this study, we used a multiomics approach to characterize the supragingival plaque microbiome of 91 Australian children, generating 658 bacterial and 189 viral metagenome-assembled genomes with transcriptional profiling and gene-expression network analysis. We developed a reproducible pipeline for clustering sample-specific genomes to integrate metagenomics and metatranscriptomics analyses regardless of biosample overlap. We introduce novel feature engineering and compositionally-aware ensemble network frameworks while demonstrating their utility for investigating regime shifts associated with caries dysbiosis. These methods can be applied when differential abundance modeling does not capture statistical enrichments or the results from such analysis are not adequate for providing deeper insight into disease. We identified which organisms and metabolic pathways were central in a coexpression network as well as how these networks were rewired between caries and caries-free phenotypes. Our findings provide evidence of a core bacterial microbiome that was transcriptionally active in the supragingival plaque of all participants regardless of phenotype, but also show highly diagnostic changes in the ways that organisms interact. Specifically, many organisms exhibit high connectedness with central carbon metabolism to Cardiobacterium and this shift serves a bridge between phenotypes. Our evidence supports the hypothesis that caries is a multifactorial ecological disease.

6.
Sci Adv ; 7(33)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34389536

RESUMEN

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.


Asunto(s)
Antozoos , Trastornos de Estrés por Calor , Microbiota , Animales , Antozoos/genética , Arrecifes de Coral , Respuesta al Choque Térmico/genética , Simbiosis
7.
Front Med (Lausanne) ; 8: 667462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249966

RESUMEN

Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.

8.
Front Microbiol ; 12: 644861, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833745

RESUMEN

The human microbiome has been proposed as a tool to investigate different forensic questions, including for the identification of multiple personal information. However, the fragmented state of the publicly available data has retarded the development of analysis techniques and, therefore, the implementation of microbiomes as a forensic tool. To address this, we introduce the forensic microbiome database (FMD), which is a collection of 16S rRNA data and associated metadata generated from publicly available data. The raw data was further normalized and processed using a pipeline to create a standardized data set for downstream analysis. We present a website allowing for the exploration of geolocation signals in the FMD. The website allows users to investigate the taxonomic differences between microbiomes harvested from different locations and to predict the geolocation of their data based on the FMD sequences. All the results are presented in dynamic graphics to allow for a rapid and intuitive investigation of the taxonomic distributions underpinning the geolocation signals and prediction between locations. Apart from the forensic aspect, the database also allows exploration and comparison of microbiome samples from different geolocation and between different body sites. The goal of the FMD is to provide the scientific and non-scientific communities with data and tools to explore the possibilities of microbiomes to answer forensic questions and serve as a model for any future such databases.

10.
PLoS Comput Biol ; 17(3): e1008857, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780444

RESUMEN

To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately identify potential novelty with higher throughput and reduced labor. Here we describe an explainable artificial intelligence classification methodology that emphasizes prediction performance and human interpretability by using a Hierarchical Ensemble of Classifiers model optimized with a novel feature selection algorithm called Clairvoyance; collectively referred to as a CoHEC model. We evaluated our methods using whole transcriptome responses from Escherichia coli challenged with 41 known antibiotics and 9 crude extracts while depositing 122 transcriptomes unique to this study. Our CoHEC model can properly predict the primary MOA of previously unobserved compounds in both purified forms and crude extracts at an accuracy above 99%, while also correctly identifying darobactin, a newly discovered antibiotic, as having a novel MOA. In addition, we deploy our methods on a recent E. coli transcriptomics dataset from a different strain and a Mycobacterium smegmatis metabolomics timeseries dataset showcasing exceptionally high performance; improving upon the performance metrics of the original publications. We not only provide insight into the biological interpretation of our model but also that the concept of MOA is a non-discrete heuristic with diverse effects for different compounds within the same MOA, suggesting substantial antibiotic diversity awaiting discovery within existing MOA.


Asunto(s)
Antiinfecciosos/farmacología , Inteligencia Artificial , Farmacorresistencia Bacteriana/genética , Metaboloma/genética , Fenilpropionatos/farmacología , Transcriptoma/genética , Algoritmos , Biología Computacional/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Metaboloma/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Transcriptoma/efectos de los fármacos
11.
Microb Ecol ; 82(4): 1074-1079, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33410935

RESUMEN

In recent years, many studies have described the composition and function of the human microbiome at different body sites and suggested a role for the microbiome in various diseases and health conditions. Some studies, using longitudinal samples, have also suggested how the microbiome changes over time due to disease, diet, development, travel, and other environmental factors. However, to date, no study has demonstrated whether the microorganisms established at birth or in early childhood, either transmitted from parents or obtained from the environment, can stay in the human body until adult or senior age. To directly answer this question is difficult, because microbiome samples at childhood and at later adulthood for the same individual will need to be compared and the field is not old enough to have allowed for that type of sample collection. Here, using a metagenomic approach, we analyzed 1004 gut microbiome samples from senior adults (65 ± 7.8 years) from the TwinsUK cohort. Our data indicate that many species in the human gut acquired in early childhood can stay for a lifetime until senior ages. We identified the rare genomic variants (single nucleotide variation and indels) for 27 prevalent species with enough sequencing coverage for confident genomic variant identification. We found that for some species, twin pairs, including both monozygotic (MZ) and dizygotic (DZ) twins, share significantly more rare variants than unrelated subject pairs. But no significant difference is found between MZ and DZ twin pairs. These observations strongly suggest that these species acquired in early childhood remained in these persons until senior adulthood.


Asunto(s)
Microbioma Gastrointestinal , Cuerpo Humano , Adulto , Preescolar , Microbioma Gastrointestinal/genética , Humanos , Recién Nacido , Metagenoma , Metagenómica , Gemelos Dicigóticos/genética
12.
Front Oral Health ; 2: 796140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048077

RESUMEN

The human oral microbiome consists of diverse microbes actively communicating and interacting through a variety of biochemical mechanisms. Dental caries is a major public health issue caused by fermentable carbohydrate consumption that leads to dysbiosis of the oral microbiome. Streptococcus mutans is a known major contributor to caries pathogenesis, due to its exceptional ability to form biofilms in the presence of sucrose, as well as to its acidophilic lifestyle. S. mutans can also kill competing bacteria, which are typically health associated, through the production of bacteriocins and other small molecules. A subset of S. mutans strains encode the muc biosynthetic gene cluster (BGC), which was recently shown to produce the tetramic acids, mutanocyclin and reutericyclins A, B, and C. Reutericyclin A displayed strong antimicrobial activity and mutanocyclin appeared to be anti-inflammatory; however the effect of these compounds, and the carriage of muc by S. mutans, on the ecology of the oral microbiota is not known, and was examined here using a previously developed in vitro biofilm model derived from human saliva. While reutericyclin significantly inhibited in vitro biofilm formation and acid production at sub-nanomolar concentrations, mutanocyclin did not present any activity until the high micromolar range. 16S rRNA gene sequencing revealed that reutericyclin drastically altered the biofilm community composition, while mutanocyclin showed a more specific effect, reducing the relative abundance of cariogenic Limosilactobacillus fermentum. Mutanocyclin or reutericyclin produced by the S. mutans strains amended to the community did not appear to affect the community in the same way as the purified compounds, although the results were somewhat confounded by the differing growth rates of the S. mutans strains. Regardless of the strain added, the addition of S. mutans to the in vitro community significantly increased the abundance of S. mutans and Veillonella infantium, only. Overall, this study illustrates that reutericyclin A and mutanocyclin do impact the ecology of a complex in vitro oral biofilm; however, further research is needed to determine the extent to which the production of these compounds affects the virulence of S. mutans.

13.
J Infect Dis ; 224(7): 1236-1246, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32239170

RESUMEN

Vertical transmission of maternal microbes is a major route for establishing the gut microbiome in newborns. The impact of perinatal antibiotics on vertical transmission of microbes and antimicrobial resistance is not well understood. Using a metagenomic approach, we analyzed the fecal samples from mothers and vaginally delivered infants from a control group (10 pairs) and a treatment group (10 pairs) receiving perinatal antibiotics. Antibiotic-usage had a significant impact on the main source of inoculum in the gut microbiome of newborns. The control group had significantly more species transmitted from mothers to infants (P = .03) than the antibiotic-treated group. Approximately 72% of the gut microbial population of infants at 3-7 days after birth in the control group was transmitted from their mothers, versus only 25% in the antibiotic-treated group. In conclusion, perinatal antibiotics markedly disturbed vertical transmission and changed the source of gut colonization towards horizontal transfer from the environment to the infants.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Transmisión Vertical de Enfermedad Infecciosa , Antibacterianos/efectos adversos , Estudios de Casos y Controles , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Metagenómica , Parto , Embarazo
14.
Microb Ecol ; 81(4): 1098-1105, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440698

RESUMEN

The preservation of artwork challenges museums, collectors, and art enthusiasts. Currently, reducing moisture, adjusting the type of lighting, and preventing the formation of mold are primary methods to preserving and preventing deterioration. Other methods such as ones based in detailed knowledge of molecular biology such as microbial community characterization using polymerase chain reaction (PCR) and sequencing have yet to be explored. Such molecular biology approaches are essential to explore as some environmental bacteria are capable of oxidizing nonpolar chemical substances rich in hydrocarbons such as oil-based paints. Using 16S rDNA Illumina Sequencing, we demonstrate a novel finding that there are differing bacterial communities for artwork from roughly the same era when comparing paintings on wood, paintings on canvases, and sculptures made of stone and marble. We also demonstrate that there are specific genera such as Aeromonas known for having oxidase positive strains, present on paintings on wood and paintings on canvas that could potentially be responsible for deterioration and fading as such organisms produce water or hydrogen peroxide as a byproduct of cytochrome c oxidase activity. The advantages of these genomics-based approaches to characterizing the microbial population on deteriorating artwork provides immense potential by identifying potentially damaging species that may not be detected using conventional methods in addition to addressing challenges to identification, restoration, and preservation efforts.


Asunto(s)
Microbiota , Pinturas , Bacterias/genética , ADN Ribosómico , Hongos/genética , ARN Ribosómico 16S/genética
15.
Microb Ecol ; 82(4): 1030-1046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33155101

RESUMEN

The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , ARN Ribosómico 16S/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Virulencia/genética
16.
Annu Rev Anim Biosci ; 9: 289-311, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33317323

RESUMEN

Host-associated microbiomes contribute in many ways to the homeostasis of the metaorganism. The microbiome's contributions range from helping to provide nutrition and aiding growth, development, and behavior to protecting against pathogens and toxic compounds. Here we summarize the current knowledge of the diversity and importance of the microbiome to animals, using representative examples of wild and domesticated species. We demonstrate how the beneficial ecological roles of animal-associated microbiomes can be generally grouped into well-defined main categories and how microbe-based alternative treatments can be applied to mitigate problems for both economic and conservation purposes and to provide crucial knowledge about host-microbiota symbiotic interactions. We suggest a Customized Combination of Microbial-Based Therapies to promote animal health and contribute to the practice of sustainable husbandry. We also discuss the ecological connections and threats associated with animal biodiversity loss, microorganism extinction, and emerging diseases, such as the COVID-19 pandemic.


Asunto(s)
Animales Domésticos , Animales Salvajes , Interacción Humano-Animal , Microbiota , Animales , Antozoos , Conducta Animal , Biodiversidad , COVID-19/transmisión , COVID-19/veterinaria , COVID-19/virología , Humanos , SARS-CoV-2 , Alimentos Marinos
18.
Geroscience ; 43(2): 593-606, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32974878

RESUMEN

Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.


Asunto(s)
Envejecimiento Saludable , Interleucina-12 , Anciano , Anciano de 80 o más Años , Enfermedad Crónica , Humanos , Plasma , Transducción de Señal
19.
mSystems ; 5(6)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33361321

RESUMEN

Compared with urban-industrial populations, small-scale human communities worldwide share a significant number of gut microbiome traits with nonhuman primates. This overlap is thought to be driven by analogous dietary triggers; however, the ecological and functional bases of this similarity are not fully understood. To start addressing this issue, fecal metagenomes of BaAka hunter-gatherers and traditional Bantu agriculturalists from the Central African Republic were profiled and compared with those of a sympatric western lowland gorilla group (Gorilla gorilla gorilla) across two seasons of variable dietary intake. Results show that gorilla gut microbiomes shared similar functional traits with each human group, depending on seasonal dietary behavior. Specifically, parallel microbiome traits were observed between hunter-gatherers and gorillas when the latter consumed more structural polysaccharides during dry seasons, while small-scale agriculturalist and gorilla microbiomes showed significant functional overlap when gorillas consumed more seasonal ripe fruit during wet seasons. Notably, dominance of microbial transporters, transduction systems, and gut xenobiotic metabolism was observed in association with traditional agriculture and energy-dense diets in gorillas at the expense of a functional microbiome repertoire capable of metabolizing more complex polysaccharides. Differential abundance of bacterial taxa that typically distinguish traditional from industrialized human populations (e.g., Prevotella spp.) was also recapitulated in the human and gorilla groups studied, possibly reflecting the degree of polysaccharide complexity included in each group's dietary niche. These results show conserved functional gut microbiome adaptations to analogous diets in small-scale human populations and nonhuman primates, highlighting the role of plant dietary polysaccharides and diverse environmental exposures in this convergence.IMPORTANCE The results of this study highlight parallel gut microbiome traits in human and nonhuman primates, depending on subsistence strategy. Although these similarities have been reported before, the functional and ecological bases of this convergence are not fully understood. Here, we show that this parallelism is, in part, likely modulated by the complexity of plant carbohydrates consumed and by exposures to diverse xenobiotics of natural and artificial origin. Furthermore, we discuss how divergence from these parallel microbiome traits is typically associated with adverse health outcomes in human populations living under culturally westernized subsistence patterns. This is important information as we trace the specific dietary and environmental triggers associated with the loss and gain of microbial functions as humans adapt to various dietary niches.

20.
J Orthop Trauma ; 34(9): e343-e348, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32815849

RESUMEN

OBJECTIVES: To compare orthopaedic trauma volume and mechanism of injury before and during statewide social distancing and stay-at-home directives. DESIGN: Retrospective. SETTING: Level 1 trauma center. PATIENTS/PARTICIPANTS: One thousand one hundred thirteen patients sustaining orthopaedic trauma injuries between March 17 and April 30 of years 2018, 2019, and 2020. INTERVENTION: Statewide social distancing and stay-at-home directives. MAIN OUTCOME MEASUREMENTS: Number of consults, mechanism of injury frequency, and type of injury frequency. RESULTS: During the COVID-19 pandemic, orthopaedic trauma consult number decreased. Injuries due to gunshot wounds increased and those due to automobile versus pedestrian accidents decreased. Time-to-presentation increased and length of stay decreased. Operative consults remained unchanged. CONCLUSIONS: Orthopaedic trauma injuries continued to occur during the COVID-19 pandemic at an overall decreased rate, however, with a different distribution in mechanism and type of injury. LEVEL OF EVIDENCE: Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Betacoronavirus , Control de Enfermedades Transmisibles , Infecciones por Coronavirus/prevención & control , Fracturas Óseas/epidemiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Aislamiento Social , Centros Traumatológicos , Accidentes por Caídas/estadística & datos numéricos , Accidentes de Tránsito/estadística & datos numéricos , Adulto , Anciano , COVID-19 , Infecciones por Coronavirus/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Neumonía Viral/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...