Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37832529

RESUMEN

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Fantasmas de Imagen , Radiometría
2.
Med Phys ; 50(11): 7263-7280, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37370239

RESUMEN

BACKGROUND: The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE: To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS: PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS: The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION: The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Algoritmos , Fantasmas de Imagen , Método de Montecarlo , Agua
3.
Phys Med Biol ; 68(5)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36706460

RESUMEN

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Asunto(s)
Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Fantasmas de Imagen , Método de Montecarlo
4.
Med Phys ; 50(2): 1105-1120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334024

RESUMEN

BACKGROUND: In a recent study, we reported beam quality correction factors, fQ , in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel-plate ionization chamber (IC). A non-negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90. PURPOSE: The aim of this study was to extend our previous work by computing fQ correction factors using the ICRU 90 stopping power data and by reporting IC-specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of the fQ correction factor was investigated by simulating both pristine beams and spread-out Bragg peaks (SOBPs). METHODS: The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3 water phantom was simulated with a uniform 10 × 10 cm2 parallel beam incident on the surface. A Farmer-type cylindrical IC (Exradin A12) and two parallel-plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer-provided geometrical drawings. The fQ correction factor was calculated in pristine carbon ion beams in the 150-450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. The kQ correction factor was calculated by simulating the fQo correction factor in a 60 Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose-averaged and track-averaged LET was calculated at the depths at which the fQ was calculated. RESULTS: The ICRU 90 fQ correction factors were reported. The pdis correction factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel-plate ICs were <1.0% except for the A11 pcel correction at the lowest energy. The fQ correction for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, the fQ for A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%. CONCLUSIONS: The perturbation and kQ correction factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.


Asunto(s)
Transferencia Lineal de Energía , Radiometría , Radiometría/métodos , Efectividad Biológica Relativa , Carbono/uso terapéutico , Método de Montecarlo
5.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35130520

RESUMEN

Purpose. The Dynamic Collimation System (DCS) is an energy layer-specific collimation device designed to reduce the lateral penumbra in pencil beam scanning proton therapy. The DCS consists of two pairs of nickel trimmers that rapidly and independently move and rotate to intercept the scanning proton beam and an integrated range shifter to treat targets less than 4 cm deep. This work examines the validity of a single aperture approximation to model the DCS, a commonly used approximation in commercial treatment planning systems, as well as higher-order aperture-based approximations for modeling DCS-collimated dose distributions.Methods. An experimentally validated TOPAS/Geant4-based Monte Carlo model of the DCS integrated with a beam model of the IBA pencil beam scanning dedicated nozzle was used to simulate DCS- and aperture-collimated 100 MeV beamlets and composite treatment plans. The DCS was represented by three different aperture approximations: a single aperture placed halfway between the upper and lower trimmer planes, two apertures located at the upper and lower trimmer planes, and four apertures, located at both the upstream and downstream faces of each pair of trimmers. Line profiles and three-dimensional regions of interest were used to evaluate the validity and limitations of the aperture approximations investigated.Results. For pencil beams without a range shifter, minimal differences were observed between the DCS and single aperture approximation. For range shifted beamlets, the single aperture approximation yielded wider penumbra widths (up to 18%) in the X-direction and sharper widths (up to 9.4%) in the Y-direction. For the example treatment plan, the root-mean-square errors (RMSEs) in an overall three-dimensional region of interest were 1.7%, 1.3%, and 1.7% for the single aperture, two aperture, and four aperture models, respectively. If the region of interest only encompasses the lateral edges outside of the target, the resulting RMSEs were 1.7%, 1.1%, and 0.5% single aperture, two aperture, and four aperture models, respectively.Conclusions. Monte Carlo simulations of the DCS demonstrated that a single aperture approximation is sufficient for modeling pristine fields at the Bragg depth while range shifted fields require a higher-order aperture approximation. For the treatment plan considered, the double aperture model performed the best overall, however, the four-aperture model most accurately modeled the lateral field edges at the expense of increased dose differences proximal to and within the target.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
6.
Med Phys ; 49(4): 2684-2698, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35120278

RESUMEN

PURPOSE: The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS: GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA-dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles. RESULTS: Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1-mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2-mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade-off between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS: The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Terapia de Protones/métodos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
7.
Med Phys ; 48(6): 3172-3185, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33740253

RESUMEN

PURPOSE: The aim of this work was to develop and experimentally validate a Dynamic Collimation Monte Carlo (DCMC) simulation package specifically designed for the simulation of collimators in pencil beam scanning proton therapy (PBS-PT). The DCMC package was developed using the TOPAS Monte Carlo platform and consists of a generalized PBS source model and collimator component extensions. METHODS: A divergent point-source model of the IBA dedicated nozzle (DN) at the Miami Cancer Institute (MCI) was created and validated against on-axis commissioning measurements taken at MCI. The beamline optics were mathematically incorporated into the source to model beamlet deflections in the X and Y directions at the respective magnet planes. Off-axis measurements taken at multiple planes in air were used to validate both the off-axis spot size and divergence of the source model. The DCS trimmers were modeled and incorporated as TOPAS geometry extensions that linearly translate and rotate about the bending magnets. To validate the collimator model, a series of integral depth dose (IDD) and lateral profile measurements were acquired at MCI and used to benchmark the DCMC performance for modeling both pristine and range shifted beamlets. The water equivalent thickness (WET) of the range shifter was determined by quantifying the shift in the depth of the 80% dose point distal to the Bragg peak between the range shifted and pristine uncollimated beams. RESULTS: A source model of the IBA DN system was successfully commissioned against on- and off-axis IDD and lateral profile measurements performed at MCI. The divergence of the source model was matched through an optimization of the source-to-axis distance and comparison against in-air spot profiles. The DCS model was then benchmarked against collimated IDD and in-air and in-phantom lateral profile measurements. Gamma analysis was used to evaluate the agreement between measured and simulated lateral profiles and IDDs with 1%/1 mm criteria and a 1% dose threshold. For the pristine collimated beams, the average 1%/1 mm gamma pass rates across all collimator configurations investigated were 99.8% for IDDs and 97.6% and 95.2% for in-air and in-phantom lateral profiles. All range shifted collimated IDDs passed at 100% while in-air and in-phantom lateral profiles had average pass rates of 99.1% and 99.8%, respectively. The measured and simulated WET of the polyethylene range shifter was determined to be 40.9 and 41.0 mm, respectively. CONCLUSIONS: We have developed a TOPAS-based Monte Carlo package for modeling collimators in PBS-PT. This package was then commissioned to model the IBA DN system and DCS located at MCI using both uncollimated and collimated measurements. Validation results demonstrate that the DCMC package can be used to accurately model other aspects of a DCS implementation via simulation.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
8.
Med Phys ; 47(7): 2725-2734, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32170750

RESUMEN

PURPOSE: When designing a collimation system for pencil beam spot scanning proton therapy, a decision must be made whether or not to rotate, or focus, the collimator to match beamlet deflection as a function of off-axis distance. If the collimator is not focused, the beamlet shape and fluence will vary as a function of off-axis distance due to partial transmission through the collimator. In this work, we quantify the magnitude of these effects and propose a focused dynamic collimation system (DCS) for use in proton therapy spot scanning. METHODS: This study was done in silico using a model of the Miami Cancer Institute's (MCI) IBA Proteus Plus system created in Geant4-based TOPAS. The DCS utilizes rectangular nickel trimmers mounted on rotating sliders that move in synchrony with the pencil beam to provide focused collimation at the edge of the target. Using a simplified setup of the DCS, simulations were performed at various off-axis locations corresponding to beam deflection angles ranging from 0° to 2.5°. At each off-axis location, focused (trimmer rotated) and unfocused (trimmer not rotated) simulations were performed. In all simulations, a 4 cm water equivalent thickness range shifter was placed upstream of the collimator, and a voxelized water phantom that scored dose was placed downstream, each with 4 cm airgaps. RESULTS: Increasing the beam deflection angle for an unfocused trimmer caused the collimated edge of the beamlet profile to shift 0.08-0.61 mm from the baseline 0° simulation. There was also an increase in low-dose regions on the collimated edge ranging from 14.6% to 192.4%. Lastly, the maximum dose, D max , was 0-5% higher for the unfocused simulations. With a focused trimmer design, the profile shift and dose increases were all eliminated. CONCLUSIONS: We have shown that focusing a collimator in spot scanning proton therapy reduces dose at the collimated edge compared to conventional, unfocused collimation devices and presented a simple, mechanical design for achieving focusing for a range of source-to-collimator distances.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...