Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38382296

RESUMEN

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Asunto(s)
Células Endoteliales , Eritropoyetina , Animales , Ratones , Hiperplasia , Hibridación Fluorescente in Situ , Miocitos Cardíacos , ARN , ARN Mensajero/genética
2.
Bioengineering (Basel) ; 10(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37892931

RESUMEN

Acute Liver Failure (ALF) is a life-threatening illness characterized by the rapid onset of abnormal liver biochemistries, coagulopathy, and the development of hepatic encephalopathy. Extracorporeal bioengineered liver (BEL) grafts could offer a bridge therapy to transplant or recovery. The present study describes the manufacture of clinical scale BELs created from decellularized porcine-derived liver extracellular matrix seeded entirely with human cells: human umbilical vein endothelial cells (HUVECs) and primary human liver cells (PHLCs). Decellularized scaffolds seeded entirely with human cells were shown to adhere to stringent sterility and safety guidelines and demonstrated increased functionality when compared to grafts seeded with primary porcine liver cells (PPLCs). BELs with PHLCs were able to clear more ammonia than PPLCs and demonstrated lower perfusion pressures during patency testing. Additionally, to determine the full therapeutic potential of BELs seeded with PHLCs, longer culture periods were assessed to address the logistical constraints associated with manufacturing and transporting a product to a patient. The fully humanized BELs were able to retain their function after cold storage simulating a product transport period. Therefore, this study demonstrates the manufacture of bioengineered liver grafts and their potential in the clinical setting as a treatment for ALF.

3.
Am J Physiol Heart Circ Physiol ; 323(6): H1221-H1230, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331554

RESUMEN

Myocardial ischemic injury and its resolution are the key determinants of morbidity or mortality in heart failure. The cause and duration of ischemia in patients vary. Numerous experimental models and methods have been developed to define genetic, metabolic, molecular, cellular, and pathophysiological mechanisms, in addition to defining structural and functional deterioration of cardiovascular performance. The rapid rise of big data, such as single-cell analysis techniques with bioinformatics, machine learning, and neural networking, brings a new level of sophistication to our understanding of myocardial ischemia. This mini-review explores the multifaceted nature of ischemic injury in the myocardium. We highlight recent state-of-the-art findings and strategies to show new directions of high-impact approach to understanding myocardial tissue remodeling. This next age of heart and circulatory physiology research will be more comprehensive and collaborative to uncover the origin, progression, and manifestation of heart failure while strengthening novel treatment strategies.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Humanos , Corazón , Miocardio/metabolismo , Isquemia/metabolismo
5.
Am J Hypertens ; 35(3): 264-271, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-34605538

RESUMEN

BACKGROUND: The Spontaneously Hypertensive Rat (SHR) Colony was established in 1963 and is the most commonly used rodent model for studying heart failure (HF). Ideally, animal models should recapitulate the clinical disease as closely as possible. Any drift in a genetic model may create a new model that no longer adequately represents the human pathology. Further, instability overtime may lead to conflicting data between laboratories and/or irreproducible results. While systolic blood pressure (SBP) is closely monitored during inbreeding, the sequelae of HF (e.g., cardiac hypertrophy) are not. Thus, the object of this review was to investigate whether the hypertension-induced sequelae of HF in the SHR have remained stable after decades of inbreeding. METHODS: A systematic review was performed to evaluate indices of cardiovascular health in the SHR over the past 60 years. For post hoc statistical analyses, studies were separated into 2 cohorts: Initial (mid to late 1900s) and Current (early 2000s to present) Colony SHRs. Wistar-Kyoto rats (WKY) were used as controls. RESULTS: SBP was consistent between Initial and Current Colony SHRs. However, Current Colony SHRs presented with increased concentric hypertrophy (i.e., elevated heart weight and posterior wall thickness) while cardiac output remained consistent. Since these changes were not observed in the WKY controls, cardiac-derived changes in Current Colony SHRs were unlikely due to differences in environmental conditions. CONCLUSIONS: Together, these data firmly establish a cardiac-based phenotypic shift in the SHR model and provide important insights into the beneficial function of concentric hypertrophy in hypertension-induced HF.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Presión Sanguínea , Cardiomegalia , Insuficiencia Cardíaca/etiología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
7.
Commun Biol ; 4(1): 1157, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620986

RESUMEN

Organ bioengineering offers a promising solution to the persistent shortage of donor organs. However, the progression of this technology toward clinical use has been hindered by the challenges of reconstituting a functional vascular network, directing the engraftment of specific functional cell types, and defining appropriate culture conditions to concurrently support the health and phenotypic stability of diverse cell lineages. We previously demonstrated the ability to functionally reendothelialize the vasculature of a clinically scaled decellularized liver scaffold with human umbilical vein endothelial cells (HUVECs) and to sustain continuous perfusion in a large animal recovery model. We now report a method for seeding and engrafting primary porcine hepatocytes into a bioengineered liver (BEL) scaffold previously reendothelialized with HUVECs. The resulting BELs were competent for albumin production, ammonia detoxification and urea synthesis, indicating the presence of a functional hepatocyte compartment. BELs additionally slowed ammonia accumulation during in vivo perfusion in a porcine model of surgically induced acute liver failure. Following explant of the graft, BEL parenchyma showed maintenance of canonical endothelial and hepatocyte markers. Taken together, these results support the feasibility of engineering a clinically scaled functional BEL and establish a platform for optimizing the seeding and engraftment of additional liver specific cells.


Asunto(s)
Trasplante de Hígado/métodos , Ingeniería de Tejidos/métodos , Animales , Modelos Animales de Enfermedad , Hepatocitos/trasplante , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Hígado/cirugía , Fallo Hepático Agudo/cirugía , Perfusión , Sus scrofa/cirugía
9.
Cell Death Differ ; 28(3): 1126-1129, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33510425

Asunto(s)
Corazón
10.
Genes Dev ; 32(15-16): 1035-1044, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006480

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is known to regulate lipid metabolism in many tissues, including macrophages. Here we report that peritoneal macrophage respiration is enhanced by rosiglitazone, an activating PPARγ ligand, in a PPARγ-dependent manner. Moreover, PPARγ is required for macrophage respiration even in the absence of exogenous ligand. Unexpectedly, the absence of PPARγ dramatically affects the oxidation of glutamine. Both glutamine and PPARγ have been implicated in alternative activation (AA) of macrophages, and PPARγ was required for interleukin 4 (IL4)-dependent gene expression and stimulation of macrophage respiration. Indeed, unstimulated macrophages lacking PPARγ contained elevated levels of the inflammation-associated metabolite itaconate and express a proinflammatory transcriptome that, remarkably, phenocopied that of macrophages depleted of glutamine. Thus, PPARγ functions as a checkpoint, guarding against inflammation, and is permissive for AA by facilitating glutamine metabolism. However, PPARγ expression is itself markedly increased by IL4. This suggests that PPARγ functions at the center of a feed-forward loop that is central to AA of macrophages.


Asunto(s)
Glutamina/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , PPAR gamma/fisiología , Animales , Respiración de la Célula , Células Cultivadas , Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Interleucina-4/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , Rosiglitazona , Tiazolidinedionas/farmacología
11.
Proc Natl Acad Sci U S A ; 115(22): E5096-E5105, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760084

RESUMEN

Obesity is characterized by an accumulation of macrophages in adipose, some of which form distinct crown-like structures (CLS) around fat cells. While multiple discrete adipose tissue macrophage (ATM) subsets are thought to exist, their respective effects on adipose tissue, and the transcriptional mechanisms that underlie the functional differences between ATM subsets, are not well understood. We report that obese fat tissue of mice and humans contain multiple distinct populations of ATMs with unique tissue distributions, transcriptomes, chromatin landscapes, and functions. Mouse Ly6c ATMs reside outside of CLS and are adipogenic, while CD9 ATMs reside within CLS, are lipid-laden, and are proinflammatory. Adoptive transfer of Ly6c ATMs into lean mice activates gene programs typical of normal adipocyte physiology. By contrast, adoptive transfer of CD9 ATMs drives gene expression that is characteristic of obesity. Importantly, human adipose tissue contains similar ATM populations, including lipid-laden CD9 ATMs that increase with body mass. These results provide a higher resolution of the cellular and functional heterogeneity within ATMs and provide a framework within which to develop new immune-directed therapies for the treatment of obesity and related sequela.


Asunto(s)
Tejido Adiposo/citología , Inflamación/fisiopatología , Macrófagos , Animales , Exosomas/química , Femenino , Humanos , Inflamación/genética , Macrófagos/química , Macrófagos/clasificación , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/fisiopatología , Tetraspanina 29/análisis , Tetraspanina 29/metabolismo , Transcriptoma/genética
12.
Biomed Res Int ; 2017: 3756089, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28357399

RESUMEN

Deletion of PI3K catalytic subunit p110α in adipose tissue (aP2-Cre/p110αflx/flx, α-/- hereafter) results in increased adiposity, glucose intolerance, and liver steatosis. Because this endocrine organ releases hormones like leptin, which are important in reproductive physiology, we investigated the reproductive phenotype of α-/- males. Compared to controls, α-/- males displayed delayed onset of puberty accompanied by a reduction in plasma LH levels and testicular weight. At postnatal day 30, α-/- mice exhibited normal body weight but elevated fasted plasma leptin levels. Testicular leptin gene expression was increased, whereas expression of the cholesterol transporter StAR and of P450 cholesterol side chain cleavage enzyme was decreased. Adult α-/- males were infertile and exhibited hyperandrogenemia with normal basal LH, FSH, and estradiol levels. However, neither sperm counts nor sperm motility was different between genotypes. The mRNA levels of leptin and of 17-beta-dehydrogenase 3, and enzyme important for testosterone production, were significantly higher in the testis of adult α-/- males. The mRNA levels of ERα, an important regulator of intratesticular steroidogenesis, were lower in the testis of adult and peripubertal α-/- males. We propose that chronic hyperleptinemia contributes to the negative impact that disrupting PI3K signaling in adipocytes has on puberty onset, steroidogenesis, and fertility in males.


Asunto(s)
Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Infertilidad Masculina/genética , Pubertad Tardía/genética , 17-Hidroxiesteroide Deshidrogenasas/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/sangre , Tejido Adiposo/patología , Animales , Fosfatidilinositol 3-Quinasa Clase I/biosíntesis , Hormona Folículo Estimulante/sangre , Regulación de la Expresión Génica , Genotipo , Humanos , Infertilidad Masculina/sangre , Infertilidad Masculina/patología , Leptina/sangre , Leptina/genética , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Transgénicos , Pubertad Tardía/sangre , Pubertad Tardía/patología , Recuento de Espermatozoides , Motilidad Espermática/genética , Testosterona/biosíntesis
13.
Am J Physiol Endocrinol Metab ; 306(10): E1205-16, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24691033

RESUMEN

Adipose tissue is a highly insulin-responsive organ that contributes to metabolic regulation. Insulin resistance in the adipose tissue affects systemic lipid and glucose homeostasis. Phosphoinositide 3-kinase (PI3K) mediates downstream insulin signaling in adipose tissue, but its physiological role in vivo remains unclear. Using Cre recombinase driven by the aP2 promoter, we created mice that lack the class 1A PI3K catalytic subunit p110α or p110ß specifically in the white and brown adipose tissue. The loss of p110α, not p110ß, resulted in increased adiposity, glucose intolerance and liver steatosis. Mice lacking p110α in adipose tissue exhibited a decrease in energy expenditure but no change in food intake or activity compared with control animals. This low energy expenditure is a consequence of low cellular respiration in the brown adipocytes caused by a decrease in expression of key mitochondrial genes including uncoupling protein-1. These results illustrate a critical role of p110α in the regulation of energy expenditure through modulation of cellular respiration in the brown adipose tissue and suggest that compromised insulin signaling in adipose tissue might be involved in the onset of obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Obesidad/enzimología , Animales , Respiración de la Célula/genética , Células Cultivadas , Femenino , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Obesidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...