Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 24(8): 1872-1880, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29330207

RESUMEN

Purpose: Decisions to continue or suspend therapy with immune checkpoint inhibitors are commonly guided by tumor dynamics seen on serial imaging. However, immunotherapy responses are uniquely challenging to interpret because tumors often shrink slowly or can appear transiently enlarged due to inflammation. We hypothesized that monitoring tumor cell death in real time by quantifying changes in circulating tumor DNA (ctDNA) levels could enable early assessment of immunotherapy efficacy.Experimental Design: We compared longitudinal changes in ctDNA levels with changes in radiographic tumor size and with survival outcomes in 28 patients with metastatic non-small cell lung cancer (NSCLC) receiving immune checkpoint inhibitor therapy. CtDNA was quantified by determining the allele fraction of cancer-associated somatic mutations in plasma using a multigene next-generation sequencing assay. We defined a ctDNA response as a >50% decrease in mutant allele fraction from baseline, with a second confirmatory measurement.Results: Strong agreement was observed between ctDNA response and radiographic response (Cohen's kappa, 0.753). Median time to initial response among patients who achieved responses in both categories was 24.5 days by ctDNA versus 72.5 days by imaging. Time on treatment was significantly longer for ctDNA responders versus nonresponders (median, 205.5 vs. 69 days; P < 0.001). A ctDNA response was associated with superior progression-free survival [hazard ratio (HR), 0.29; 95% CI, 0.09-0.89; P = 0.03], and superior overall survival (HR, 0.17; 95% CI, 0.05-0.62; P = 0.007).Conclusions: A drop in ctDNA level is an early marker of therapeutic efficacy and predicts prolonged survival in patients treated with immune checkpoint inhibitors for NSCLC. Clin Cancer Res; 24(8); 1872-80. ©2018 AACR.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Progresión de la Enfermedad , Humanos , Inmunoterapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/inmunología , Mutación , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Análisis de Supervivencia , Factores de Tiempo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
2.
Cancer Discov ; 5(5): 534-49, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25735773

RESUMEN

UNLABELLED: Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/Y395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for MIG6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. SIGNIFICANCE: This study demonstrates that MIG6 is a potent tumor suppressor for mutant EGFR-driven lung tumor initiation and progression in mice and provides a possible mechanism by which mutant EGFR can partially circumvent this tumor suppressor in human lung adenocarcinoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adenocarcinoma/genética , Adenocarcinoma/patología , Transformación Celular Neoplásica/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Supresoras de Tumor/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Receptores ErbB/metabolismo , Eliminación de Gen , Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA