Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744986

RESUMEN

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

2.
Nat Med ; 30(5): 1309-1319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627559

RESUMEN

Cancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal (n = 12,799) and two external (n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists' diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.


Asunto(s)
Aprendizaje Profundo , Neoplasias Primarias Desconocidas , Humanos , Neoplasias Primarias Desconocidas/patología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Curva ROC , Adulto , Citodiagnóstico/métodos , Anciano de 80 o más Años , Ascitis/patología , Citología
3.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662341

RESUMEN

G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

4.
Nat Commun ; 13(1): 7554, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477674

RESUMEN

Antibodies are essential biological research tools and important therapeutic agents, but some exhibit non-specific binding to off-target proteins and other biomolecules. Such polyreactive antibodies compromise screening pipelines, lead to incorrect and irreproducible experimental results, and are generally intractable for clinical development. Here, we design a set of experiments using a diverse naïve synthetic camelid antibody fragment (nanobody) library to enable machine learning models to accurately assess polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide quantitative scoring metrics that predict the effect of amino acid substitutions on polyreactivity. We experimentally test our models' performance on three independent nanobody scaffolds, where over 90% of predicted substitutions successfully reduced polyreactivity. Importantly, the models allow us to diminish the polyreactivity of an angiotensin II type I receptor antagonist nanobody, without compromising its functional properties. We provide a companion web-server that offers a straightforward means of predicting polyreactivity and polyreactivity-reducing mutations for any given nanobody sequence.


Asunto(s)
Fragmentos de Inmunoglobulinas
5.
Inorg Chem ; 59(23): 17712-17721, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33216537

RESUMEN

Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear µ-oxo and µ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and µ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ µ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...