Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(3): 4012-4024, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097829

RESUMEN

In developing nations, solid residential fuels are the major sources of primary energy for various domestic activities. To date, the emission inventory of inorganic trace gases over National Capital Territory (NCT) was prepared using either default or country-specific emission factors. In this paper, we report (for the first time) the spatial variation of emission factors (EFs) of inorganic trace gases (SO2, NO, NO2, CO, CO2, and CH4) from the residential fuels used in slums and rural areas of NCT determined using dilution chamber in the laboratory. 147 residential fuel samples, including fuelwood, dung cake, crop residues, coal, etc., were collected at 149 NCT locations out of 675 slum clusters and 146 rural villages. The range of EF(s) of SO2 (0.02 ± 0.01 to 0.04 ± 0.01 g kg-1), CH4 (0.10 to 0.34 g kg-1), NO2 (0.01 to 0.02 g kg-1) is lower than the CO (3.55 ± 1.72 to 6.07 ± 1.53 g kg-1) and CO2 (0 to 129.45 ± 46.94 g kg-1). The north and north west districts of NCT are emission hotspots for CH4, NO, and NO2 emissions, whereas, the southern and northern areas of NCT are for CO2. These citywide emission inventories (0.05° × 0.05°) of inorganic trace gases are prepared using laboratory-determined EFs and available consumption data determined by recent survey information. Among solid residential fuels, fuel wood, and dung cake are two major contributors to inorganic trace gases in NCT.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Gases , Dióxido de Carbono/análisis , Dióxido de Nitrógeno , Carbón Mineral
2.
Sci Data ; 10(1): 587, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679357

RESUMEN

Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

3.
Environ Pollut ; 336: 122336, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37595729

RESUMEN

The critical ecological process of animal-mediated pollination is commonly facilitated by odour cues. These odours consist of volatile organic compounds (VOCs), often with short chemical lifetimes, which form the strong concentration gradients necessary for pollinating insects to locate a flower. Atmospheric oxidants, including ozone pollution, may react with and chemically alter these VOCs, impairing the ability of pollinators to locate a flower, and therefore the pollen and nectar on which they feed. However, there is limited mechanistic empirical evidence to explain these processes within an odour plume at temporal and spatial scales relevant to insect navigation and olfaction. We investigated the impact of ozone pollution and turbulent mixing on the fate of four model floral VOCs within odour plumes using a series of controlled experiments in a large wind tunnel. Average rates of chemical degradation of α-terpinene, ß-caryophyllene and 6-methyl-5-hepten-2-one were slightly faster than predicted by literature rate constants, but mostly within uncertainty bounds. Mixing reduced reaction rates by 8-10% in the first 2 m following release. Reaction rates also varied across the plumes, being fastest at plume edges where VOCs and ozone mixed most efficiently and slowest at plume centres. Honeybees were trained to learn a four VOC blend equivalent to the plume released at the wind tunnel source. When subsequently presented with an odour blend representative of that observed 6 m from the source at the centre of the plume, 52% of honeybees recognised the odour, decreasing to 38% at 12 m. When presented with the more degraded blend from the plume edge, recognition decreased to 32% and 10% at 6 and 12 m respectively. Our findings highlight a mechanism by which anthropogenic pollutants can disrupt the VOC cues used in plant-pollinator interactions, which likely impacts on other critical odour-mediated behaviours such as mate attraction.

4.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37333938

RESUMEN

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

5.
Environ Int ; 171: 107676, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495675

RESUMEN

Simulation models can be valuable tools in supporting development of air pollution policy. However, exploration of future scenarios depends on reliable and robust modelling to provide confidence in outcomes which cannot be tested against measurements. Here we focus on the UK Integrated Assessment Model, a fast reduced-form model with a purpose to support policy development with modelling of multiple alternative future scenarios, and the EMEP4UK model which is a complex Eulerian Atmospheric Chemistry Transport Model requiring significant computing resources. The EMEP4UK model has been used to model selected core scenarios to compare with UKIAM, and to investigate sensitivity studies such as the interannual variability in response to meteorological differences between years. This model intercomparison addresses total PM2.5, primary PM2.5 and Secondary Inorganic Aerosol concentrations for a baseline of 2018 and selected scenarios for projections to 2040. This work has confirmed the robustness of the UK Integrated Assessment Model for assessing alternative futures through a direct comparison with EMEP4UK. Both models have shown good agreement with measurements, and EMEP4UK shows an ability to replicate past trends. These comparisons highlight how a combination of reduced-form modelling (UKIAM) and complex chemical transport modelling (EMEP4UK) can be effectively used in support of air pollution policy development, informing understanding of projected futures in the context of emerging evidence and uncertainties.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Predicción , Material Particulado/análisis , Monitoreo del Ambiente
6.
Sci Total Environ ; 830: 154662, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35318060

RESUMEN

The measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO2 emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO2, we analysed district level CO2 fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities. The data span several years before the pandemic until October 2020 (six months after the pandemic began in Europe). All sites showed a reduction in CO2 emissions during the national lockdowns. The magnitude of these reductions varies in time and space, from city to city as well as between different areas of the same city. We found that, during the first lockdowns, urban CO2 emissions were cut with respect to the same period in previous years by 5% to 87% across the analysed districts, mainly as a result of limitations on mobility. However, as the restrictions were lifted in the following months, emissions quickly rebounded to their pre-COVID levels in the majority of sites.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , Dióxido de Carbono/análisis , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
7.
Environ Pollut ; 297: 118847, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063287

RESUMEN

Common air pollutants, such as nitrogen oxides (NOx), emitted in diesel exhaust, and ozone (O3), have been implicated in the decline of pollinating insects. Reductionist laboratory assays, focused upon interactions between a narrow range of flowering plant and pollinator species, in combination with atmospheric chemistry models, indicate that such pollutants can chemically alter floral odors, disrupting the cues that foraging insects use to find and pollinate flowers. However, odor environments in nature are highly complex and pollination services are commonly provided by suites of insect species, each exhibiting different sensitivities to different floral odors. Therefore, the potential impacts of pollution-induced foraging disruption on both insect ecology, and the pollination services that insects provide, are currently unknown. We conducted in-situ field studies to investigate whether such pollutants could reduce pollinator foraging and as a result the pollination ecosystem service that those insects provide. Using free-air fumigation, we show that elevating diesel exhaust and O3, individually and in combination, to levels lower than is considered safe under current air quality standards, significantly reduced counts of locally-occurring wild and managed insect pollinators by 62-70% and their flower visits by 83-90%. These reductions were driven by changes in specific pollinator groups, including bees, flies, moths and butterflies, and coincided with significant reductions (14-31%) in three different metrics of pollination and yield of a self-fertile test plant. Quantifying such effects provides new insights into the impacts of human-induced air pollution on the natural ecosystem services upon which we depend.


Asunto(s)
Contaminantes Atmosféricos , Mariposas Diurnas , Animales , Abejas , Ecosistema , Flores , Insectos , Polinización
9.
Faraday Discuss ; 226: 409-431, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33336656

RESUMEN

Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2-C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35-1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi.

10.
Faraday Discuss ; 226: 502-514, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33244555

RESUMEN

Surface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality. Here, we combine in situ observations and model analysis to investigate the impact of PM reduction on the non-linear relationship between volatile organic compounds (VOC), nitrogen oxides (NOx) and ozone. In situ measurements of NOx, VOC, and ozone were conducted in Delhi during the APHH-India programme in summer (June) and winter (November) 2018. We observed hourly averaged ozone concentrations in the city of up to 100 ppbv in both seasons. We performed sensitivity simulations with a chemical box model to explore the impacts of PM on the non-linear VOC-NOx-ozone relationship in each season through its effect on aerosol optical depth (AOD). We find that ozone production is limited by VOC in both seasons, and is particularly sensitive to solar radiation in winter. Reducing NOx alone increases ozone, such that a 50% reduction in NOx emissions leads to 10-50% increase in surface ozone. In contrast, reducing VOC emissions can reduce ozone efficiently, such that a 50% reduction in VOC emissions leads to ∼60% reduction in ozone. Reducing PM alone also increases ozone, especially in winter, by reducing its dimming effects on photolysis, such that a 50% reduction in AOD can increase ozone by 25% and it also enhances VOC-limitation. Our results highlight the importance of reducing VOC emissions alongside PM to limit ozone pollution, as well as benefitting control of PM pollution through reducing secondary organic aerosol. This will greatly benefit the health of citizens and the local ecosystem in Delhi, and could have broader application for other megacities characterized by severe PM pollution and VOC-limited ozone production.

11.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190314, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32981430

RESUMEN

Air pollution has been recognized as a threat to human health since the time of Hippocrates, ca 400 BC. Successive written accounts of air pollution occur in different countries through the following two millennia until measurements, from the eighteenth century onwards, show the growing scale of poor air quality in urban centres and close to industry, and the chemical characteristics of the gases and particulate matter. The industrial revolution accelerated both the magnitude of emissions of the primary pollutants and the geographical spread of contributing countries as highly polluted cities became the defining issue, culminating with the great smog of London in 1952. Europe and North America dominated emissions and suffered the majority of adverse effects until the latter decades of the twentieth century, by which time the transboundary issues of acid rain, forest decline and ground-level ozone became the main environmental and political air quality issues. As controls on emissions of sulfur and nitrogen oxides (SO2 and NOx) began to take effect in Europe and North America, emissions in East and South Asia grew strongly and dominated global emissions by the early years of the twenty-first century. The effects of air quality on human health had also returned to the top of the priorities by 2000 as new epidemiological evidence emerged. By this time, extensive networks of surface measurements and satellite remote sensing provided global measurements of both primary and secondary pollutants. Global emissions of SO2 and NOx peaked, respectively, in ca 1990 and 2018 and have since declined to 2020 as a result of widespread emission controls. By contrast, with a lack of actions to abate ammonia, global emissions have continued to grow. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Asunto(s)
Contaminación del Aire , Lluvia Ácida , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/historia , Contaminación del Aire/legislación & jurisprudencia , Ciudades , Ecosistema , Monitoreo del Ambiente , Eutrofización , Salud Global/historia , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Ozono/análisis , Material Particulado/análisis , Tecnología de Sensores Remotos
12.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190320, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32981438

RESUMEN

The potential to capture additional air pollutants by introducing more vegetation or changing existing short vegetation to woodland on first sight provides an attractive route for lowering urban pollution. Here, an atmospheric chemistry and transport model was run with a range of landcover scenarios to quantify pollutant removal by the existing total UK vegetation as well as the UK urban vegetation and to quantify the effect of large-scale urban tree planting on urban air pollution. UK vegetation as a whole reduces area (population)-weighted concentrations significantly, by 10% (9%) for PM2.5, 30% (22%) for SO2, 24% (19%) for NH3 and 15% (13%) for O3, compared with a desert scenario. By contrast, urban vegetation reduces average urban PM2.5 by only approximately 1%. Even large-scale conversion of half of existing open urban greenspace to forest would lower urban PM2.5 by only another 1%, suggesting that the effect on air quality needs to be considered in the context of the wider benefits of urban tree planting, e.g. on physical and mental health. The net benefits of UK vegetation for NO2 are small, and urban tree planting is even forecast to increase urban NO2 and NOx concentrations, due to the chemical interaction with changes in BVOC emissions and O3, but the details depend on tree species selection. By extrapolation, green infrastructure projects focusing on non-greenspace (roadside trees, green walls, roof-top gardens) would have to be implemented at very large scales to match this effect. Downscaling of the results to micro-interventions solely aimed at pollutant removal suggests that their impact is too limited for their cost-benefit analysis to compare favourably with emission abatement measures. Urban vegetation planting is less effective for lowering pollution than measures to reduce emissions at source. The results highlight interactions that cannot be captured if benefits are quantified via deposition models using prescribed concentrations, and emission damage costs. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Asunto(s)
Contaminación del Aire/prevención & control , Árboles , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/metabolismo , Contaminación del Aire/análisis , Planificación de Ciudades , Simulación por Computador , Ecosistema , Monitoreo del Ambiente , Humanos , Modelos Biológicos , Material Particulado/análisis , Material Particulado/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Incertidumbre , Reino Unido
13.
J Environ Sci (China) ; 95: 33-42, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653190

RESUMEN

Vertical profiles of isoprene and monoterpenes were measured by a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) at heights of 3, 15, 32, 64, and 102 m above the ground on the Institute of Atmospheric Physics (IAP) tower in central Beijing during the winter of 2016 and the summer of 2017. Isoprene mixing ratios were larger in summer due to much stronger local emissions whereas monoterpenes were lower in summer due largely to their consumption by much higher levels of ozone. Isoprene mixing ratios were the highest at the 32 m in summer (1.64 ± 0.66 ppbV) and at 15 m in winter (1.41 ± 0.64 ppbV) with decreasing concentrations to the ground and to the 102 m, indicating emission from the tree canopy of the surrounding parks. Monoterpene mixing ratios were the highest at the 3 m height in both the winter (0.71 ± 0.42 ppbV) and summer (0.16 ± 0.10 ppbV) with a gradual decreasing trend to 102 m, indicting an emission from near the ground level. The lowest isoprene and monoterpene mixing ratios all occurred at 102 m, which were 0.71 ± 0.42 ppbV (winter) and 1.35 ± 0.51 ppbV (summer) for isoprene, and 0.42 ± 0.22 ppbV (winter) and 0.07 ± 0.06 ppbV (summer) for monoterpenes. Isoprene in the summer and monoterpenes in the winter, as observed at the five heights, showed significant mutual correlations. In the winter monoterpenes were positively correlated with combustion tracers CO and acetonitrile at 3 m, suggesting possible anthropogenic sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis , Beijing , Monitoreo del Ambiente , Monoterpenos/análisis
14.
Sci Total Environ ; 681: 226-234, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103660

RESUMEN

To understand the temporal characteristics and vertical distributions of ammonia (NH3) and ammonium (NH4) in urban Beijing, we conducted ground-based and tower-based measurements of gaseous NH3 and submicron aerosol composition. The average mixing ratio of NH3 was 16.5 ±â€¯7.4 ppb, ranging from 3.8 to 36.9 ppb. Gas-to-particle partitioning of NHx (=NH3 + NH4) played a significant role on NH3 concentration as the molar ratio of NH3 to NHx decreased as a function of NH4 concentration. The NH3 concentrations increased as a function of PM1 at lower levels (<125 µg m-3), but remained relatively constant at higher PM and NH4 levels, indicating an enhanced gas-to-particle conversion of NH3 during highly polluted conditions. The potential sources of NHx were found to include fossil fuel combustion and biomass burning. Regional transport could also play an important role on NH3 concentration during the formation stage of haze episodes due to particle-to-gas conversion. Four distinctive types of vertical profiles (87% of the time) of both NH3 and fine particle light extinction coefficient (bext) were observed and they were associated with well-mixed atmosphere, fast accumulation of local emissions, regional transport aloft, and the formation of low urban boundary layer, respectively. However, the vertical profiles of NH3 typically (96% of the time) showed a more homogeneous characteristic than those of bext below 260 m, except periods with both strong temperature inversion and large aerosol gradient, the formation of urban boundary layer shall cause a significant transition in the vertical distribution of NH3 below 260 m. During highly polluted situations (PM1 > 125 µg m-3), the strong effect of gas-to-particle partitioning of NHx sometimes (7% of the time) caused opposite trends in vertical profiles of NH3 and bext.

15.
Environ Sci Technol ; 49(2): 1025-34, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25494849

RESUMEN

Direct measurements of NOx concentration and flux were made from a tall tower in central London, UK as part of the Clean Air for London (ClearfLo) project. Fast time resolution (10 Hz) NO and NO2 concentrations were measured and combined with fast vertical wind measurements to provide top-down flux estimates using the eddy covariance technique. Measured NOx fluxes were usually positive and ranged from close to zero at night to 2000-8000 ng m(-2) s(-1) during the day. Peak fluxes were usually observed in the morning, coincident with the maximum traffic flow. Measurements of the NOx flux have been scaled and compared to the UK National Atmospheric Emissions Inventory (NAEI) estimate of NOx emission for the measurement footprint. The measurements are on average 80% higher than the NAEI emission inventory for all of London. Observations made in westerly airflow (from parts of London where traffic is a smaller fraction of the NOx source) showed a better agreement on average with the inventory. The observations suggest that the emissions inventory is poorest at estimating NOx when traffic is the dominant source, in this case from an easterly direction from the BT Tower. Agreement between the measurements and the London Atmospheric Emissions Inventory (LAEI) are better, due to the more explicit treatment of traffic flow by this more detailed inventory. The flux observations support previous tailpipe observations of higher NOx emitted from the London vehicle diesel fleet than is represented in the NAEI or predicted for several EURO emission control technologies. Higher-than-anticipated vehicle NOx is likely responsible for the significant discrepancies that exist in London between observed NOx and long-term NOx projections.


Asunto(s)
Contaminantes Atmosféricos/análisis , Óxido Nítrico/análisis , Dióxido de Nitrógeno/análisis , Nitrógeno/análisis , Emisiones de Vehículos/análisis , Atmósfera , Monitoreo del Ambiente/métodos , Gases , Londres
16.
Sci Total Environ ; 479-480: 171-80, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24561924

RESUMEN

An atmospheric chemical transport model was adapted to simulate the concentration and deposition of heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, selenium, vanadium, and zinc) in the United Kingdom. The model showed that wet deposition was the most important process for the transfer of metals from the atmosphere to the land surface. The model achieved a good correlation with annually averaged measurements of metal concentrations in air. The correlation with measurements of wet deposition was less strong due to the complexity of the atmospheric processes involved in the washout of particulate matter which were not fully captured by the model. The measured wet deposition and air concentration of heavy metals were significantly underestimated by the model for all metals (except vanadium) by factors between 2 and 10. These results suggest major missing sources of annual heavy metal emissions which are currently not included in the official inventory. Primary emissions were able to account for only 9%, 21%, 29%, 21%, 36%, 7% and 23% of the measured concentrations for As, Cd, Cr, Cu, Ni, Pb and Zn. A likely additional contribution to atmospheric heavy metal concentrations is the wind driven re-suspension of surface dust still present in the environment from the legacy of much higher historic emissions. Inclusion of two independent estimates of emissions from re-suspension in the model was found to give an improved agreement with measurements. However, an accurate estimate of the magnitude of re-suspended emissions is restricted by the lack of measurements of metal concentrations in the re-suspended surface dust layer.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Monitoreo del Ambiente , Metales Pesados/análisis , Modelos Químicos , Reino Unido
17.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130166, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23713128

RESUMEN

Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.


Asunto(s)
Contaminación del Aire/análisis , Amoníaco/química , Atmósfera/análisis , Cambio Climático , Clima , Modelos Teóricos , Ciclo del Nitrógeno , Amoníaco/análisis , Animales , Aves , Estados Unidos
18.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3196-209, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22006962

RESUMEN

This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.


Asunto(s)
Agricultura , Arecaceae/química , Atmósfera/química , Gases/química , Árboles/química , Derivados de Alilbenceno , Altitud , Anisoles/química , Arecaceae/fisiología , Borneo , Butadienos/química , Carbono/química , Dióxido de Carbono/química , Transferencia de Energía , Hemiterpenos/química , Malasia , Metano/química , Óxidos de Nitrógeno/química , Ozono/química , Pentanos/química , Fotosíntesis , Suelo/química , Temperatura , Árboles/fisiología , Compuestos Orgánicos Volátiles/química
19.
Environ Sci Technol ; 44(5): 1683-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20104891

RESUMEN

An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.


Asunto(s)
Aire/análisis , Amoníaco/análisis , Suelo/análisis , Zea mays/metabolismo , Agricultura , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Fertilizantes , Cinética , Modelos Biológicos , Temperatura , Tiempo (Meteorología) , Viento
20.
Environ Sci Technol ; 43(5): 1412-8, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19350912

RESUMEN

Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.


Asunto(s)
Aerosoles/análisis , Atmósfera/química , Automatización/instrumentación , Química Inorgánica/instrumentación , Gases/análisis , Compuestos Inorgánicos/análisis , Agua/química , Amoníaco/análisis , Gravitación , Nitratos/análisis , Estándares de Referencia , Solubilidad , Soluciones , Propiedades de Superficie , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...