Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776094

RESUMEN

This study analyzes the feasibility of utilizing the catalytic and enantioselective [4 + 2] cycloaddition of sterically demanding heterocycle-incorporated siloxydienes to yield polycyclic skeletons with a tetrasubstituted carbon. A catalyst derived from lanthanide triflimide enabled the reaction. The mechanistic investigations and transformations of the adducts are also discussed. The proposed approach facilitates the synthesis of intricate polysubstituted skeletons, each with multiple contiguous chiral centers, thereby aiding in the production of diverse hydrocarbazoles for drug discovery purposes.

2.
Org Lett ; 26(15): 3289-3293, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38568017

RESUMEN

Pseudoindoxyl is a partial skeleton found in various natural products. Its light-absorption properties make it useful for the design of functional molecules. However, versatile synthesis methods have not yet been reported. In this report, we present a versatile synthetic method for pseudoindoxyls using the direct S0 → Tn transition under visible light irradiation. We also discuss the application of pseudoindoxyls as photocatalysts.

3.
Nat Commun ; 15(1): 2309, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485991

RESUMEN

The rapid and precise creation of complex molecules while controlling multiple selectivities is the principal objective in synthetic chemistry. Combining data science and organic synthesis to achieve this goal is an emerging trend, but few examples of successful reaction designs are reported. We develop an artificial neural network regression model using bond orbital data to predict chemical reactivities. Actual experimental verification confirms cycloheptatriene-selective [6 + 2]-cycloaddition utilizing nitroso compounds and norcaradiene-selective [4 + 2]-cycloaddition reactions employing benzynes. Additionally, a one-pot asymmetric synthesis is achieved by telescoping the enantioselective dearomatization of non-activated benzenes and cycloadditions. Computational studies provide a rational explanation for the seemingly anomalous occurrence of thermally prohibited suprafacial [6 + 2]-cycloaddition without photoirradiation.

4.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494725

RESUMEN

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Asunto(s)
Metano/análogos & derivados , Rodio , Catálisis , Rodio/química , Metano/química , Hidrógeno/química
5.
Org Lett ; 26(3): 670-675, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38206835

RESUMEN

The total synthesis of dragmacidins G and H was achieved for the first time by employing nucleophilic aromatic substitution and site-selective cross-coupling reactions using appropriately functionalized pyrazines as substrates. The evaluation of antibacterial activities of dragmacidin G, dragmacidin H, and synthetic analogues against Staphylococcus aureus and the efflux pump-deficient Salmonella Typhimurium revealed that the presence of a Br group on the indole ring adjacent to the sulfide unit was important for increasing antibacterial activities.


Asunto(s)
Antibacterianos , Alcaloides Indólicos , Staphylococcus aureus , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Alcaloides Indólicos/química
6.
Chem Asian J ; 19(2): e202300937, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37986694

RESUMEN

Herein, we report the unusual skeletal rearrangement of spiro[4.5]decadienone to benzoxepane. In particular, Lewis acid-promoted epoxide-opening ipso-cyclization of aryl epoxides afforded spiro[4.5]decadienone intermediates. Subsequent thermal activation assembled a benzoxepane core via rearomative molecular reorganization. The sequence was high-yielding and highly diastereoselective but sensitive to the aromatic substitution pattern and the epoxide side chain. Mechanistic studies suggested that the rearrangement proceeded via an uncommon intramolecular enolate attack onto the electrophilic O of p-quinone oxonium zwitterion. DFT calculations helped rationalize the product distribution and the origin of diastereoselectivity. Initial investigation into the application of this chemical transformation is also presented.

7.
J Am Chem Soc ; 146(1): 733-741, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38149316

RESUMEN

Transition-metal-catalyzed enantioselective N-H insertion reactions of carbene species offer a powerful and straightforward strategy to produce chiral nitrogen-containing compounds. Developing highly selective insertion reactions using indole variants can meet synthetic demand. Herein we present an asymmetric insertion reaction into N-H bonds of the aromatic heterocycles using donor/acceptor-substituted diazo compounds based on a heteronuclear catalytic platform. Although a previously developed catalysis comprising chiral silver catalyst or dirhodium(II,II) paddlewheel complexes with and without chiral phosphoric acid showed modest performance, a unique combination of widely available Rh2(OAc)4 and silver(I) phosphate dimer [(S)-TRIP-Ag]2 enabled asymmetric carbene insertion reactions (up to 98% ee). Moreover, the Ag/Rh catalytic system facilitated regioselective and enantioselective C-H functionalization of protic indoles. Mechanistic investigation based on density functional theory indicated that an in situ-generated Ag-Rh trimetallic enolate is protonated in a chiral environment.

8.
Org Lett ; 25(43): 7890-7894, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37882510

RESUMEN

Herein we report a scandium-catalyzed regioselective synthesis of 5-carbonyl-4-hydroxybenzofurans via a phenol-directed intramolecular Friedel-Crafts reaction. This synthetic method was applied for the total synthesis of furanoflavones. Experimental studies and density functional theory calculations suggest that hydrogen bond interactions between the phenolic hydroxy group and the scandium complex realize regioselective intramolecular cyclization.

9.
Chem Pharm Bull (Tokyo) ; 71(8): 624-632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532532

RESUMEN

To develop dearomatization reactions based on a nucleophilic activation of phenols, naphthols, and indoles, ipso-Friedel-Crafts-type C-alkylation must be selectively promoted over competitive O- or N-alkylation reactions. Resolving this chemoselectivity issue is essential for developing this class dearomatization reaction. We found that various dearomatization reactions could be developed using appropriately designed aromatic substrates with an electrophilic moiety for intramolecular reactions. This review describes the transition-metal-catalyzed dearomatization reactions developed by our group. π-Allylpalladium species, η3-propargylpalladium species, alkynes activated by Au(I) species, and silver carbene species could be applied as electrophiles in our reaction system, which provided access to a wide variety of dearomatized products from planar aromatic compounds in a highly chemoselective manner.


Asunto(s)
Fenoles , Elementos de Transición , Fenoles/química , Naftoles , Catálisis
10.
Chem Pharm Bull (Tokyo) ; 71(2): 107-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724974

RESUMEN

C-H insertion and amide insertion reactions using metal-carbene species provide a powerful synthetic method for direct functionalization of kinetically inert or thermodynamically stable chemical bonds. Our group previously developed an amide insertion reaction using a rhodium-dimer complex, constructing an array of nitrogen-bridged heterocycles. Another research group reported C-H insertion reactions using structurally related substrates and rhodium catalysts. Detailed mechanistic studies were not provided, however, and therefore, the origin of the chemoselectivity was ambiguous. Here we describe our theoretical investigation of the chemoselectivity between the amide insertion reaction and C-H functionalization. An energy gap of the identified transition states in the reaction coordinates could support the reported experimental results and the observed chemoselectivity. Moreover, frontier molecular orbital analysis revealed that functionalities adjacent to the metal-carbene species could affect orbital populations and their energy levels, resulting in the construction of a completely distinctive ring system.


Asunto(s)
Rodio , Rodio/química , Metano , Catálisis , Nitrógeno/química
11.
Chem Pharm Bull (Tokyo) ; 71(2): 78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724982
12.
J Org Chem ; 88(12): 7674-7683, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36701491

RESUMEN

We developed an enantioselective synthetic method of constructing a seven-membered ring-fused indole skeleton with contiguous stereocenters for the synthesis of dragmacidin E. Introduction of chirality at the benzylic position was achieved by Ir-catalyzed asymmetric hydrogenation. After construction of the tricyclic molecular framework using Pd-catalyzed cascade cyclization, the tetrasubstituted carbon center was created using the Ag nitrene-mediated C-H amination reaction. The developed method provided access to the functionalized seven-membered ring-fused indole skeleton with a hydroxymethyl branch in the tetrasubstituted carbon.


Asunto(s)
Carbono , Alcaloides Indólicos , Estereoisomerismo , Catálisis , Esqueleto
13.
Chem Biol Interact ; 369: 110257, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36375514

RESUMEN

Compounds with 3,4-fused tricyclic indole (FTI) frameworks are attractive scaffolds for drug discovery. We synthesized FTI-6D, a compound with this framework, which was cytotoxic in several human cancer cell lines. FTI-6D induced apoptosis via activation of the p53 downstream mitochondria-related apoptotic pathway, characterized by an increased ratio of pro-apoptotic Bcl-2 family members to anti-apoptotic members. This change was followed by caspase-9 and caspase-3 cleavage and activation in two cancer cell lines, RKO and AGS. The anti-proliferating effect of FTI-6D was remarkably detected in eight cancer cells with wild-type TP53 (TP53_wt), including RKO and AGS, but not in seven cancer cells with mutated TP53 (TP53_mut). Additionally, p53 protein levels increased after FTI-6D treatment in TP53_wt cancer cells, and the cytotoxic effect of FTI-6D was decreased by TP53 knockdown. Accordingly, the expression of p53 downstream genes involved in apoptotic signaling pathways, such as BBC3 and TP53INP1, and those involved in cell growth inhibition, such as CDKN1A, was upregulated in TP53_wt cancer cells. These results suggest that the anti-proliferative and apoptosis-inducing activities of FTI-6D rely on p53 and the corresponding signaling processes. This study demonstrated that FTI-6D shows anti-cancer activity against TP53_wt cancer cells. FTI-6D may have potential as a prototype compound for a new drug to utilize a functional p53 pathway in TP53_wt cancer cells.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Genes p53 , Apoptosis , Línea Celular Tumoral , Células HCT116 , Neoplasias/genética , Proteínas Portadoras/genética , Proteínas de Choque Térmico/metabolismo
14.
Chem Pharm Bull (Tokyo) ; 70(10): 735-739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184457

RESUMEN

Computational chemistry is useful in synthetic organic chemistry, as it can be used not only to analyze reaction mechanisms, but also to calculate biosynthetic pathways and to plan and evaluate strategies for total syntheses. Here we report the computation-guided total synthesis of vitisinol G, a resveratrol dimer.


Asunto(s)
Estilbenos , Resveratrol
15.
Nat Commun ; 13(1): 4052, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831306

RESUMEN

Although transition metal-catalyzed reactions have evolved with ligand development, ligand design for palladium-catalyzed photoreactions remains less explored. Here, we report a secondary phosphine oxide ligand bearing a visible-light sensitization moiety and apply it to Pd-catalyzed radical cross-coupling reactions. The tautomeric phosphinous acid coordinates to palladium in situ, allowing for pseudo-intramolecular single-electron transfer between the ligand and palladium. Molecular design of the metal complexes aided by time-dependent density functional theory calculations enables the involvement of allyl radicals from π-allyl palladium(II) complexes, and alkyl and aryl radicals from the corresponding halides and palladium(0) complex. This complex enables radical cross-couplings by ligand-to-Pd(II) and Pd(0)-to-ligand single-electron transfer under visible-light irradiation.


Asunto(s)
Óxidos , Paladio , Catálisis , Ligandos , Fosfinas
17.
Chem Pharm Bull (Tokyo) ; 70(3): 235-239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228388

RESUMEN

Heavy atom-containing molecules cause a photoreaction by a direct S0 → Tn transition. Therefore, even in a hypervalent iodine compound with a benzene ring as the main skeleton, the photoreaction proceeds under 365-400 nm wavelength light, where UV-visible spectra are not observed by usual measurement method. Some studies, however, report hypervalent iodine compounds that strongly absorb visible light. Herein, we report the synthesis of two visible light-absorbing hypervalent iodines and their photooxidation properties under visible light irradiation. We also demonstrated that the S0 → Tn transition causes the photoreaction to proceed under wavelengths in the blue and green light region.


Asunto(s)
Yodo , Luz , Oxidación-Reducción
18.
Nat Commun ; 13(1): 152, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013143

RESUMEN

Although computational simulation-based natural product syntheses are in their initial stages of development, this concept can potentially become an indispensable resource in the field of organic synthesis. Herein we report the asymmetric total syntheses of several resveratrol dimers based on a comprehensive computational simulation of their biosynthetic pathways. Density functional theory (DFT) calculations suggested inconsistencies in the biosynthesis of vaticahainol A and B that predicted the requirement of structural corrections of these natural products. According to the computational predictions, total syntheses were examined and the correct structures of vaticahainol A and B were confirmed. The established synthetic route was applied to the asymmetric total synthesis of (-)-malibatol A, (-)-vaticahainol B, (+)-vaticahainol A, (+)-vaticahainol C, and (-)-albiraminol B, which provided new insight into the biosynthetic pathway of resveratrol dimers. This study demonstrated that computation-guided organic synthesis can be a powerful strategy to advance the chemical research of natural products.


Asunto(s)
Productos Biológicos/química , Diseño de Fármacos/métodos , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Resveratrol/síntesis química , Estilbenos/síntesis química , Técnicas de Química Sintética , Teoría Funcional de la Densidad , Dimerización , Humanos , Resveratrol/análogos & derivados , Estereoisomerismo
19.
Sci Rep ; 11(1): 20207, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642360

RESUMEN

Machine learning to create models on the basis of big data enables predictions from new input data. Many tasks formerly performed by humans can now be achieved by machine learning algorithms in various fields, including scientific areas. Hypervalent iodine compounds (HVIs) have long been applied as useful reactive molecules. The bond dissociation enthalpy (BDE) value is an important indicator of reactivity and stability. Experimentally measuring the BDE value of HVIs is difficult, however, and the value has been estimated by quantum calculations, especially density functional theory (DFT) calculations. Although DFT calculations can access the BDE value with high accuracy, the process is highly time-consuming. Thus, we aimed to reduce the time for predicting the BDE by applying machine learning. We calculated the BDE of more than 1000 HVIs using DFT calculations, and performed machine learning. Converting SMILES strings to Avalon fingerprints and learning using a traditional Elastic Net made it possible to predict the BDE value with high accuracy. Furthermore, an applicability domain search revealed that the learning model could accurately predict the BDE even for uncovered inputs that were not completely included in the training data.

20.
J Org Chem ; 86(14): 9670-9681, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34176262

RESUMEN

Following the discovery of an unusual transition-metal-catalyzed reaction, the elucidation of the underlying mechanism is essential to understand the characteristic reactivity of the metal. We previously reported a synthetic method for tricyclic indoles using Pt-catalyzed Friedel-Crafts-type C-H coupling. In this reaction, the Pt catalyst selectively formed a seven-membered ring, but the Pd catalyst only afforded a six-membered ring. However, the reasons for the different selectivities caused by Pd and Pt were unclear. We performed density functional theory (DFT) calculations and experimental studies to reveal the origin of the different behaviors of the two metals. The calculations revealed that the formation of the six- and seven-membered rings proceeds via η1-allenyl and η3-propargyl/allenyl complexes, respectively. A molecular orbital analysis of the η3-propargyl/allenyl complex revealed that, for the platinum complex, the energy required to convert the unoccupied molecular orbital on the reactive carbon into the lowest unoccupied molecular orbital (LUMO) was lower than that for the palladium complex. In addition, DFT calculations revealed that the combination of platinum and bis[2-(diphenylphosphino)phenyl] ether (DPEphos) reduced the activation energy of the seven-membered cyclization in comparison with palladium or PPh3. Additional experimental studies, including NMR studies and stoichiometric reactions, support the aforementioned examination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...