Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 10(6)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28772940

RESUMEN

Barium hexaferrite powder samples with grains in the µm-range were obtained from solid-state sintering, and crystals with sizes up to 5 mm grown from PbO, Na2CO3, and BaB2O4 fluxes, respectively. Carbonate and borate fluxes provide the largest and structurally best crystals at significantly lower growth temperatures of 1533 K compared to flux-free synthesis (1623 K). The maximum synthesis temperature can be further reduced by the application of PbO-containing fluxes (down to 1223 K upon use of 80 at % PbO), however, Pb-substituted crystals Ba1-xPbxFe12O19 with Pb contents in the range of 0.23(2) ≤ x ≤ 0.80(2) form, depending on growth temperature and flux PbO content. The degree of Pb-substitution has only a minor influence on unit cell and magnetic parameters, although the values for Curie temperature, saturation magnetization, as well as the coercivity of these samples are significantly reduced in comparison with those from samples obtained from the other fluxes. Due to the lowest level of impurities, the samples from carbonate flux show superior quality compared to materials obtained using other methods.

2.
Inorg Chem ; 56(7): 3861-3866, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28290672

RESUMEN

The coexistence of three valence states of Mn ions, namely, +2, +3, and +4, in substituted magnetoplumbite-type BaFe12-xMnxO19 was observed by soft X-ray absorption spectroscopy at the Mn-L2,3 edge. We infer that the occurrence of multiple valence states of Mn situated in the pristine purely iron(III) compound BaFe12O19 is made possible by the fact that the charge disproportionation of Mn3+ into Mn2+ and Mn4+ requires less energy than that of Fe3+ into Fe2+ and Fe4+, related to the smaller effective Coulomb interaction of Mn3+ (d4) compared to Fe3+ (d5). The different chemical environments determine the location of the differently charged ions: with Mn3+ occupying positions with (distorted) octahedral local symmetry, Mn4+ ions prefer octahedrally coordinated sites in order to optimize their covalent bonding. Larger and more ionic bonded Mn2+ ions with a spherical charge distribution accumulate at tetrahedrally coordinated sites. Simulations of the experimental Mn-L2,3 XAS spectra of two different samples with x = 1.5 and x = 1.7 led to Mn2+:Mn3+:Mn4+ atomic ratios of 0.16:0.51:0.33 and 0.19:0.57:0.24.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...