Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 36(10): 3290-3291, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32044952

RESUMEN

SUMMARY: Dispersed across the Internet is an abundance of disparate, disconnected training information, making it hard for researchers to find training opportunities that are relevant to them. To address this issue, we have developed a new platform-TeSS-which aggregates geographically distributed information and presents it in a central, feature-rich portal. Data are gathered automatically from content providers via bespoke scripts. These resources are cross-linked with related data and tools registries, and made available via a search interface, a data API and through widgets. AVAILABILITY AND IMPLEMENTATION: https://tess.elixir-europe.org.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Programas Informáticos , Humanos , Internet , Investigadores
2.
PLoS Comput Biol ; 14(8): e1006191, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30161124

RESUMEN

Workshops are used to explore a specific topic, to transfer knowledge, to solve identified problems, or to create something new. In funded research projects and other research endeavours, workshops are the mechanism used to gather the wider project, community, or interested people together around a particular topic. However, natural questions arise: how do we measure the impact of these workshops? Do we know whether they are meeting the goals and objectives we set for them? What indicators should we use? In response to these questions, this paper will outline rules that will improve the measurement of the impact of workshops.


Asunto(s)
Educación/normas , Humanos , Conocimiento , Aprendizaje , Investigación , Pesos y Medidas
3.
F1000Res ; 62017.
Artículo en Inglés | MEDLINE | ID: mdl-28781745

RESUMEN

Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

4.
BMC Ecol ; 16(1): 49, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27765035

RESUMEN

BACKGROUND: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. RESULTS: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. CONCLUSIONS: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.


Asunto(s)
Biodiversidad , Ecología/métodos , Ecología/instrumentación , Internet , Modelos Biológicos , Programas Informáticos , Flujo de Trabajo
5.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538599

RESUMEN

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Asunto(s)
Biología Computacional , Sistema de Registros , Curaduría de Datos , Programas Informáticos
6.
Nucleic Acids Res ; 41(Web Server issue): W557-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640334

RESUMEN

The Taverna workflow tool suite (http://www.taverna.org.uk) is designed to combine distributed Web Services and/or local tools into complex analysis pipelines. These pipelines can be executed on local desktop machines or through larger infrastructure (such as supercomputers, Grids or cloud environments), using the Taverna Server. In bioinformatics, Taverna workflows are typically used in the areas of high-throughput omics analyses (for example, proteomics or transcriptomics), or for evidence gathering methods involving text mining or data mining. Through Taverna, scientists have access to several thousand different tools and resources that are freely available from a large range of life science institutions. Once constructed, the workflows are reusable, executable bioinformatics protocols that can be shared, reused and repurposed. A repository of public workflows is available at http://www.myexperiment.org. This article provides an update to the Taverna tool suite, highlighting new features and developments in the workbench and the Taverna Server.


Asunto(s)
Biología Computacional , Programas Informáticos , Minería de Datos , Perfilación de la Expresión Génica , Internet , Filogenia , Proteómica , Motor de Búsqueda , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA