Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(9)2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37174707

RESUMEN

(1) Rho-associated coiled-coil protein kinase (ROCK) signaling cascade impacts a wide array of cellular events. For cellular therapeutics, scalable expansion of primary human corneal endothelial cells (CECs) is crucial, and the inhibition of ROCK signaling using a well characterized ROCK inhibitor (ROCKi) Y-27632 had been shown to enhance overall endothelial cell yield. (2) In this study, we compared several classes of ROCK inhibitors to both ROCK-I and ROCK-II, using in silico binding simulation. We then evaluated nine ROCK inhibitors for their effects on primary CECs, before narrowing it down to the two most efficacious compounds-AR-13324 (Netarsudil) and its active metabolite, AR-13503-and assessed their impact on cellular proliferation in vitro. Finally, we evaluated the use of AR-13324 on the regenerative capacity of donor cornea with an ex vivo corneal wound closure model. Donor-matched control groups supplemented with Y-27632 were used for comparative analyses. (3) Our in silico simulation revealed that most of the compounds had stronger binding strength than Y-27632. Most of the nine ROCK inhibitors assessed worked within the concentrations of between 100 nM to 30 µM, with comparable adherence to that of Y-27632. Of note, both AR-13324 and AR-13503 showed better cellular adherence when compared to Y-27632. Similarly, the proliferation rates of CECs exposed to AR-13324 were comparable to those of Y-27632. Interestingly, CECs expanded in a medium supplemented with AR-13503 were significantly more proliferative in (i) untreated vs. AR-13503 (1 µM; * p < 0.05); (ii) untreated vs. AR-13503 (10 µM; *** p < 0.001); (iii) Y-27632 vs. AR-13503 (10 µM; ** p < 0.005); (iv) AR-13324 (1 µM) vs. AR-13503 (10 µM; ** p < 0.005); and (v) AR-13324 (0.1 µM) vs. AR-13503 (10 µM; * p < 0.05). Lastly, an ex vivo corneal wound healing study showed a comparable wound healing rate for the final healed area in corneas exposed to Y-27632 or AR-13324. (4) In conclusion, we were able to demonstrate that various classes of ROCKi compounds other than Y-27632 were able to exert positive effects on primary CECs, and systematic donor-match controlled comparisons revealed that the FDA-approved ROCK inhibitor, AR-13324, is a potential candidate for cellular therapeutics or as an adjunct drug in regenerative treatment for corneal endothelial diseases in humans.


Asunto(s)
Endotelio Corneal , Quinasas Asociadas a rho , Humanos , Endotelio Corneal/metabolismo , Quinasas Asociadas a rho/metabolismo , Células Endoteliales/metabolismo
2.
Commun Biol ; 6(1): 348, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997596

RESUMEN

TGFBI-related corneal dystrophy (CD) is characterized by the accumulation of insoluble protein deposits in the corneal tissues, eventually leading to progressive corneal opacity. Here we show that ATP-independent amyloid-ß chaperone L-PGDS can effectively disaggregate corneal amyloids in surgically excised human cornea of TGFBI-CD patients and release trapped amyloid hallmark proteins. Since the mechanism of amyloid disassembly by ATP-independent chaperones is unknown, we reconstructed atomic models of the amyloids self-assembled from TGFBIp-derived peptides and their complex with L-PGDS using cryo-EM and NMR. We show that L-PGDS specifically recognizes structurally frustrated regions in the amyloids and releases those frustrations. The released free energy increases the chaperone's binding affinity to amyloids, resulting in local restructuring and breakage of amyloids to protofibrils. Our mechanistic model provides insights into the alternative source of energy utilized by ATP-independent disaggregases and highlights the possibility of using these chaperones as treatment strategies for different types of amyloid-related diseases.


Asunto(s)
Distrofias Hereditarias de la Córnea , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Córnea/metabolismo , Distrofias Hereditarias de la Córnea/metabolismo , Amiloide/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Adenosina Trifosfato/metabolismo
3.
Redox Biol ; 37: 101763, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33099215

RESUMEN

Nuclear factor, erythroid 2 like 2 (Nrf2), is an oxidative stress induced transcription factor that regulates cytoprotective gene expression. Thus, Nrf2 is essential for cellular redox homeostasis. Loss or dysregulation of Nrf2 expression has been implicated in the pathogenesis of degenerative diseases, including diseases of the cornea. One of the most common diseases of the cornea in which Nrf2 is implicated is Fuchs' endothelial cornea dystrophy (FECD). FECD is the leading indication for corneal transplantation; and is associated with a loss of corneal endothelial cell (CEC) function. In this review, we propose that Nrf2 is an essential regulator of CEC function. Furthermore, we demonstrate that deficiency of Nrf2 function is a hallmark of FECD. In addition, we advocate that pharmacological targeting of Nrf2 as a possible therapy for FECD.


Asunto(s)
Distrofia Endotelial de Fuchs , Factor 2 Relacionado con NF-E2 , Córnea/metabolismo , Distrofia Endotelial de Fuchs/genética , Regulación de la Expresión Génica , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética
4.
Cells ; 9(6)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526886

RESUMEN

Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet's membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion. Morphometric analyses were performed on the isolated single cells. The functional capacities of these cells, isolated using the optimized simple non-cultured endothelial cells (SNEC) harvesting technique, for CE-CI therapy were investigated using a rabbit bullous keratopathy model. The two control groups were the positive controls, where rabbits received cultured CECs, and the negative controls, where rabbits received no CECs. Whilst it took longer for CECs to dislodge as single cells following donor DM/CE incubation in M5-Endo medium, CECs harvested were morphologically more homogenous and smaller compared to CECs obtained from DM/CE incubated in M4-F99 medium (p < 0.05). M5-Endo medium was hence selected as the DM/CE incubation medium prior to enzymatic digestion to harvest CECs for the in vivo cell-injection studies. Following SNEC injection, mean central corneal thickness (CCT) of rabbits increased to 802.9 ± 147.8 µm on day 1, gradually thinned, and remained clear with a CCT of 385.5 ± 38.6 µm at week 3. Recovery of corneas was comparable to rabbits receiving cultured CE-CI (p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3, respectively). Corneas that did not receive any cells remained significantly thicker compared to both SNEC injection and cultured CE-CI groups (p < 0.05). This study concluded that direct harvesting of single CECs from donor corneas for SNEC injection allows the utilization of donor corneas unsuitable for conventional endothelial transplantation.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Corneal/trasplante , Ingeniería de Tejidos/métodos , Animales , Humanos , Conejos , Medicina Regenerativa , Análisis de la Célula Individual , Donantes de Tejidos
5.
Biomaterials ; 153: 70-84, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29125983

RESUMEN

The endothelial lining of blood vessels is severely affected in type II diabetes. Yet, there is still a paucity on the use of diabetic endothelial cells for study and assessment of implantable devices targeting vascular disease. This critically impairs our ability to determine appropriate topographical cues to be included in implantable devices that can be used to maintain or improve endothelial cell function in vivo. Here, the functional responses of healthy and diabetic human coronary arterial endothelial cells were studied and observed to differ depending on topography. Gratings (2 µm) maintained normal endothelial functions such as adhesiveness, angiogenic capacity and cell-cell junction formation, and reduced immunogenicity of healthy cells. However, a significant and consistent effect was not observed in diabetic cells. Instead, diabetic endothelial cells cultured on the perpendicularly aligned multi-scale hierarchical gratings (250 nm gratings on 2 µm gratings) drastically reduced the uptake of oxidized low-density lipoprotein, decreased immune activation, and accelerated cell migration. Concave microlens (1.8 µm diameter) topography was additionally observed to overwhelmingly deteriorate diabetic endothelial cell function. The results of this study support a new paradigm and approach in the design and testing of implantable devices and biomedical interventions for diabetic patients.


Asunto(s)
Vasos Coronarios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Adulto , Adhesión Celular , Movimiento Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Vasos Coronarios/patología , Diabetes Mellitus Tipo 2/patología , Células Endoteliales/inmunología , Células Endoteliales/fisiología , Femenino , Colorantes Fluorescentes/química , Expresión Génica , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Persona de Mediana Edad , Neovascularización Fisiológica
6.
Adv Biosyst ; 2(6)2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30766915

RESUMEN

Adhesion and proliferation of vascular endothelial cells are important parameters in the endothelialization of biomedical devices for vascular applications. Endothelialization is a complex process affected by endothelial cells and their interaction with the extracellular microenvironment. Although numerous approaches are taken to study the influence of the external environment, a systematic investigation of the impact of an engineered microenvironment on endothelial cell processes is needed. This study aims to investigate the influence of topography, initial cell seeding density, and collagen coating on human umbilical vein endothelial cells (HUVECs). Utilizing the MultiARChitecture (MARC) chamber, the effects of various topographies on HUVECs are identified, and those with more prominent effects were further evaluated individually using the MARC plate. Endothelial cell marker expression and monocyte adhesion assay are examined on the HUVEC monolayer. HUVECs on 1.8 µm convex and concave microlens topographies demonstrate the lowest cell adhesion and proliferation, regardless of initial cell seeding density and collagen I coating, and the HUVEC monolayer on the microlens shows the lowest monocyte adhesion. This property of lens topographies would potentially be a useful parameter in designing vascular biomedical devices. The MARC chamber and MARC plate show a great potential for faster and easy pattern identification for various cellular processes.

7.
Biomaterials ; 131: 68-85, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28380401

RESUMEN

Cell therapy for vascular damage has been showing promises as alternative therapy for endothelial dysfunctions since the discovery of the endothelial progenitor cells (EPCs). However, isolated EPCs from peripheral blood yield low cell amounts and alternative cell source must be explored. The aim of this study was to investigate the influence of topography on the endothelial differentiation of an alternative cell source - human mesenchymal stem cells (hMSCs) from bone marrow. Utilizing the MultiARChitecture (MARC) chip, a systematic screening of variety of patterned surfaces and different medium compositions was performed. While topographical patterns alone induce endothelial differentiation, a synergistic enhancement was observed when topography was combined with a medium enriched with vascular endothelial growth factor (VEGF). The 1.8 µm diameter convex microlens pattern in combination with the VEGF enriched medium was shown to be the most efficient on the endothelial differentiation, yielding up to 10% of CD34+CD133+KDR+ marker expressing differentiated hMSCs as analyzed by flow cytometry. The quantified tube-like structures in the Matrigel assay in vitro indicated a vasculogenic potential of these endothelial progenitor-like differentiated hMSCs that was investigated further in a Matrigel plug assay in vivo in a rat for seven days. Explanted Matrigel plugs were processed with hematoxylin-eosin (H&E) and anti-Ulex Europaeus agglutinin (UEA-1) staining to visualize the capillaries and to identify the presence of human cells. The hMSCs cultured on the 1.8 µm diameter convex microlens in a medium enriched with VEGF, implanted in a Matrigel plug in a rat, showed the highest capillary density, the highest UEA-1+ capillary density, as well as the highest UEA-1+ cell survival density that were not included in the vasculogenesis. These findings indicate the active participation of the vasculogenic hMSCs in the vasculogenesis. The endothelial differentiation of hMSCs using this synergistic combination of microlens and VEGF enriched medium was also demonstrated in hMSCs from different male and female donors. The culture platform with combination of topography and biochemical cues could generate vasculogenic cell populations that may prove useful in vascular damage or other clinical applications.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Células Progenitoras Endoteliales/citología , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/farmacología , Adulto , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Células Progenitoras Endoteliales/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Procedimientos Analíticos en Microchip/métodos , Neovascularización Fisiológica/efectos de los fármacos , Propiedades de Superficie , Adulto Joven
8.
J Mater Chem B ; 5(2): 254-268, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263544

RESUMEN

A nanodevice comprising human serum (HS) protein corona coated gold nanorods (NRs) has been developed to perform both photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously at a very low dose under irradiation by a single laser. Here, we exploit the protein corona to load a photosensitizer, chlorin e6 (Ce6), to form NR-HS-Ce6, whose excitation wavelength matches with the longitudinal surface plasmon resonance (LSPR) of NRs. When excited by a single laser, the NRs caused photothermal ablation of cancer cells while Ce6 simultaneously produced reactive oxygen species (ROS) to kill cancer cells through oxidative stress in PDT. We found that the protein corona did not affect the photothermal heating of NRs and observed more than 5-fold increase in ROS generation when Ce6 was loaded on NR-HS compared to free HS-Ce6 dissolved in HS. The uptake of Ce6 by Cal 27 oral squamous cell carcinoma (OSCC) cells also increased 57-fold when loaded on NR-HS compared to free HS-Ce6. While both PDT and PTT have established modest success in reducing cancer cell viability on their own, we have shown that the combined therapy can achieve near complete eradication (95.2% cell kill) of cancer cells even at an extremely low dose of 50 pM of NR-HS-Ce6 containing an equivalent of 7.67 µg mL-1 Au and 4.83 nM Ce6. This near complete cell kill at such a low dose has not been reported previously. The advantages of this nanoscale delivery system showcase the application of protein corona in cancer treatment instead of considering it as an undesirable biological artefact.

9.
Crit Rev Biomed Eng ; 41(4-5): 323-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24941412

RESUMEN

Nanomaterials can be considered as "pseudo" subcellular entities that are similar to endogenous biomolecules because of their size and ability to interact with other biomolecules. The interaction between nanoparticles and biomolecules gives rise to the nano-bio interface between a nanoparticle and its biological environment. This is often defined in terms of the biomolecules that are present on the surface of the nanoparticles. The nano-bio interface alters the surface characteristics and is what the biological system sees and interacts with. The nanoparticle can thus be viewed as a "scaffold" to which molecules are attached. Intelligent design of this nano-bio interface is therefore crucial to the functionality of nanoscale systems in biology. In this review, we discuss the most common nano-bio interfaces formed from molecules including DNA, polymers, proteins, and antibodies, and discuss their applications in probing and modulating biological processes. We focus our discussion on the nano-bio interface formed on gold nanoparticles as our nanoparticle "scaffold" of interest in part because of our research interest as well as their unique physicochemical properties. While not exhaustive, this review provides a good overview of the latest advances in the use of gold nanomaterial interface to probe and modulate biological processes.


Asunto(s)
Ingeniería Biomédica/métodos , Oro/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Animales , Anticuerpos/química , Fenómenos Biológicos , ADN/química , Humanos , Proteínas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...