Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702808

RESUMEN

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Asunto(s)
Apoptosis , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Riñón , Monocitos , Organoides , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Organoides/citología , Organoides/metabolismo , Organoides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Riñón/citología , Riñón/metabolismo , Monocitos/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Sirolimus/farmacología , Autofagia/efectos de los fármacos , Técnicas de Cocultivo/métodos , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos
2.
ACS Chem Neurosci ; 14(15): 2761-2774, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37468304

RESUMEN

The role of cyclin-dependent kinase 5 (Cdk5) in the normal functioning of the central nervous system and synaptic plasticity is well established. However, dysregulated kinase activity can have a significant impact on neurodegeneration and cognitive impairment. Cdk5 hyperactivation is linked to diabetes-associated neurodegeneration, but the underlying mechanism is not fully understood. Our study reveals that oxidative stress can lead to Cdk5 hyperactivity, which in turn is linked to neurodegeneration and cognitive impairment. Specifically, our experiments with N2A cells overexpressing Cdk5 and its activators p35 and p25 show ER stress, resulting in activation of the unfolded protein response (UPR) pathway. We identified Cdk5 as the epicenter of this regulatory process, leading to the activation of the CDK5-IRE1-XBP1 arm of UPR. Moreover, our study demonstrated that Cdk5 hyperactivation can lead to ER stress and activation of the UPR pathway, which may contribute to cognitive impairments associated with diabetes. Our findings also suggest that antioxidants such as NAC and GSH can decrease deregulated Cdk5 kinase activity and rescue cells from UPR-mediated ER stress. The accumulation of phosphorylated Tau protein in AD brain protein has been widely described earlier. Notably, we observed that oral treatment with NAC decreased Cdk5 kinase activity in the hippocampus, attenuated high levels of phospho-tau (ser396), and ameliorated memory and learning impairments in a type 2 diabetic (T2D) mouse model. Additionally, the high-fat-induced T2D model exhibits elevated phospho-tau levels, which are rescued by the NAC treatment. Taken together, these results suggest that targeting Cdk5 may be a promising therapeutic strategy for treating diabetes-associated cognitive impairments.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Ratones , Animales , Regulación hacia Arriba , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Encéfalo/metabolismo , Fosforilación , Proteínas tau/metabolismo , Respuesta de Proteína Desplegada , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
3.
Mech Ageing Dev ; 213: 111838, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37329989

RESUMEN

MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21-22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Regulación de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA