Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(41): 47902-47920, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37812745

RESUMEN

Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (µPADs). GSH is successfully detected on the fabricated µPADs coated with only 6.0 µg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 µM with a limit of detection of 1.23 µM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using µPADs, which paves the way to develop µPADs for point-of-care testing.


Asunto(s)
Grafito , Animales , Ratones , Grafito/química , Manganeso , Microfluídica , Oxidorreductasas/química , Peroxidasa/química , Colorimetría/métodos , Glutatión , Peróxido de Hidrógeno/química
2.
J Photochem Photobiol B ; 195: 1-11, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31029912

RESUMEN

Coal is one of the most abundant natural carbonaceous materials. This paper reports a novel oxidative chemical method for the synthesis of high-value carbon dots (CDs) from cheap and abundant low-quality high­sulfur coals for use in high-end applications. These CDs were synthesized by using wet-chemical ultrasonic stimulation-induced process which is environmentally facile and less drastic compared to other chemical methods of production of CDs. The sizes of the synthesized CDs from different types of coal samples were estimated to be in the range of 1-4 nm, 1-6 nm, 2-5 nm, and 10-30 nm. The quantum yield (QY) of the CDs was determined and it was found to be around 3-14%. For high-end field application, the CDs were further tested for toxicity and were reported to be safe for environmental and biological applications. The cell image analysis under the fluorescence microscope further indicated that the synthesized CDs could be used as a promising bio-compatible material for optical-imaging as well as bio-imaging. The CDs showed promising fluorescent sensing property and can be utilized as a good probe for silver ion detection/sensing. The CDs is also found to be a promising reagent for silver nanoparticles synthesis. The results provide a new avenue for large-scale synthesis of CDs.


Asunto(s)
Materiales Biocompatibles/química , Carbono/química , Carbón Mineral/análisis , Puntos Cuánticos/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Puntos Cuánticos/toxicidad , Plata/química , Espectrometría de Fluorescencia , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...