RESUMEN
Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.
Asunto(s)
Dióxido de Carbono , Incendios , Brasil , Ecosistema , Bosques , ÁrbolesRESUMEN
Episodic multi-year droughts fundamentally alter the dynamics, functioning, and structure of Amazonian forests. However, the capacity of individual plant species to withstand intense drought regimes remains unclear. Here, we evaluated ecophysiological responses from a forest community where we sampled 83 woody plant species during 5 years of experimental drought (throughfall exclusion) in an eastern Amazonian terra firme forest. Overall, the experimental drought resulted in shifts of some, but not all, leaf traits related to photosynthetic carbon uptake and intrinsic water-use efficiency. Leaf δ13C values increased by 2-3 within the canopy, consistent with increased diffusional constraints on photosynthesis. Decreased leaf C:N ratios were also observed, consistent with lower investments in leaf structure. However, no statistically significant treatment effects on leaf nitrogen content were observed, consistent with a lack of acclimation in photosynthetic capacity or increased production of nitrogen-based secondary metabolites. The results of our study provide evidence of robust acclimation potential to drought intensification in the diverse flora of an Amazonian forest community. The results reveals considerable ability of several species to respond to intense drought and challenge commonly held perspectives that this flora has attained limited adaptive plasticity because of a long evolutionary history in a favorable and stable climate.
Asunto(s)
Sequías , Árboles , Aclimatación , Bosques , Fotosíntesis , Hojas de la PlantaRESUMEN
The recent 70% decline in deforestation in the Brazilian Amazon suggests that it is possible to manage the advance of a vast agricultural frontier. Enforcement of laws, interventions in soy and beef supply chains, restrictions on access to credit, and expansion of protected areas appear to have contributed to this decline, as did a decline in the demand for new deforestation. The supply chain interventions that fed into this deceleration are precariously dependent on corporate risk management, and public policies have relied excessively on punitive measures. Systems for delivering positive incentives for farmers to forgo deforestation have been designed but not fully implemented. Territorial approaches to deforestation have been effective and could consolidate progress in slowing deforestation while providing a framework for addressing other important dimensions of sustainable development.
Asunto(s)
Conservación de los Recursos Naturales/tendencias , Glycine max/provisión & distribución , Carne/provisión & distribución , Política Pública , Animales , Brasil , Bovinos , HumanosRESUMEN
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW â m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Asunto(s)
Sequías , Incendios , Árboles/fisiología , Biomasa , Brasil , Clima , Humedad , Temperatura , Factores de Tiempo , Presión de Vapor , AguaRESUMEN
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/estadística & datos numéricos , Lluvia , Energía Renovable/estadística & datos numéricos , Ríos , Árboles , Brasil , Simulación por Computador , Modelos Teóricos , Política Pública , Estaciones del AñoRESUMEN
Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4-13.2 stems m(-2)), but after 6 years, increased mortality and decreased regeneration--primarily of seedlings--led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred--almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes.
Asunto(s)
Incendios , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Biota , Brasil , Sequías , Germinación , Tallos de la Planta/crecimiento & desarrollo , Estaciones del Año , Semillas/crecimiento & desarrolloRESUMEN
Land-use regulations are a critical component of forest governance and conservation strategies, but their effectiveness in shaping landholder behaviour is poorly understood. We conducted a spatial and temporal analysis of the Brazilian Forest Code (BFC) to understand the patterns of regulatory compliance over time and across changes in the policy, and the implications of these compliance patterns for the perceived costs to landholders and environmental performance of agricultural landscapes in the southern Amazon state of Mato Grosso. Landholdings tended to remain in compliance or not according to their status at the beginning of the study period. The perceived economic burden of BFC compliance on soya bean and beef producers (US$3-5.6 billion in net present value of the land) may in part explain the massive, successful campaign launched by the farm lobby to change the BFC. The ecological benefits of compliance (e.g. greater connectivity and carbon) with the BFC are diffuse and do not compete effectively with the economic benefits of non-compliance that are perceived by landholders. Volatile regulation of land-use decisions that affect billions in economic rent that could be captured is an inadequate forest governance instrument; effectiveness of such regulations may increase when implemented in tandem with positive incentives for forest conservation.
Asunto(s)
Agricultura/economía , Conservación de los Recursos Naturales/economía , Política Ambiental , Agricultura Forestal/legislación & jurisprudencia , Agricultura/legislación & jurisprudencia , Animales , Brasil , Carbono/análisis , Bovinos , Simulación por Computador , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecosistema , Agricultura Forestal/economía , Carne/economía , Glycine max/economía , Análisis Espacial , ÁrbolesRESUMEN
Climate change and rapidly escalating global demand for food, fuel, fibre and feed present seemingly contradictory challenges to humanity. Can greenhouse gas (GHG) emissions from land-use, more than one-fourth of the global total, decline as growth in land-based production accelerates? This review examines the status of two major international initiatives that are designed to address different aspects of this challenge. REDD+ is an emerging policy framework for providing incentives to tropical nations and states that reduce their GHG emissions from deforestation and forest degradation. Market transformation, best represented by agricultural commodity roundtables, seeks to exclude unsustainable farmers from commodity markets through international social and environmental standards for farmers and processors. These global initiatives could potentially become synergistically integrated through (i) a shared approach for measuring and favouring high environmental and social performance of land use across entire jurisdictions and (ii) stronger links with the domestic policies, finance and laws in the jurisdictions where agricultural expansion is moving into forests. To achieve scale, the principles of REDD+ and sustainable farming systems must be embedded in domestic low-emission rural development models capable of garnering support across multiple constituencies. We illustrate this potential with the case of Mato Grosso State in the Brazilian Amazon.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Política Ambiental , Cooperación Internacional , Planificación Social , Agricultura , Brasil , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/legislación & jurisprudencia , Abastecimiento de Alimentos , Efecto Invernadero , Glycine max , Árboles , Clima TropicalRESUMEN
Changes in climate and land use that interact synergistically to increase fire frequencies and intensities in tropical regions are predicted to drive forests to new grass-dominated stable states. To reveal the mechanisms for such a transition, we established 50 ha plots in a transitional forest in the southwestern Brazilian Amazon to different fire treatments (unburned, burned annually (B1yr) or at 3-year intervals (B3yr)). Over an 8-year period since the commencement of these treatments, we documented: (i) the annual rate of pasture and native grass invasion in response to increasing fire frequency; (ii) the establishment of Brachiaria decumbens (an African C4 grass) as a function of decreasing canopy cover and (iii) the effects of grass fine fuel on fire intensity. Grasses invaded approximately 200 m from the edge into the interiors of burned plots (B1yr: 4.31 ha; B3yr: 4.96 ha) but invaded less than 10 m into the unburned plot (0.33 ha). The probability of B. decumbens establishment increased with seed availability and decreased with leaf area index. Fine fuel loads along the forest edge were more than three times higher in grass-dominated areas, which resulted in especially intense fires. Our results indicate that synergies between fires and invasive C4 grasses jeopardize the future of tropical forests.
Asunto(s)
Brachiaria/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Incendios , Especies Introducidas , Árboles/crecimiento & desarrollo , Clima Tropical , Brasil , Ecosistema , Luz , Modelos Logísticos , SemillasAsunto(s)
Conservación de los Recursos Naturales/tendencias , Brasil , Sequías , Incendios , ÁrbolesRESUMEN
Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).
Asunto(s)
Cambio Climático , Ecosistema , Incendios , Modelos Teóricos , Árboles , Simulación por Computador , Monitoreo del Ambiente , Actividades Humanas , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
In 2010, dry-season rainfall was low across Amazonia, with apparent similarities to the major 2005 drought. We analyzed a decade of satellite-derived rainfall data to compare both events. Standardized anomalies of dry-season rainfall showed that 57% of Amazonia had low rainfall in 2010 as compared with 37% in 2005 (≤-1 standard deviation from long-term mean). By using relationships between drying and forest biomass responses measured for 2005, we predict the impact of the 2010 drought as 2.2 × 10(15) grams of carbon [95% confidence intervals (CIs) are 1.2 and 3.4], largely longer-term committed emissions from drought-induced tree deaths, compared with 1.6 × 10(15) grams of carbon (CIs 0.8 and 2.6) for the 2005 event.
Asunto(s)
Sequías , Ecosistema , Árboles , Biomasa , Brasil , Carbono , Estaciones del Año , América del SurRESUMEN
Aragão and Shimabukuro (Reports, 4 June 2010, p. 1275) reported that fires increase in agricultural frontiers even as deforestation decreases and concluded that these fires lead to unaccounted carbon emissions under the United Nations climate treaty's tropical deforestation and forest degradation component. Emissions from post-deforestation management activities are, in fact, included in these estimates--but burning of standing forests is not.
Asunto(s)
Conservación de los Recursos Naturales , Incendios/estadística & datos numéricos , Árboles , Brasil , Carbono , Naciones UnidasRESUMEN
Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.
Asunto(s)
Ecosistema , Estaciones del Año , Árboles/crecimiento & desarrollo , Clima Tropical , Geografía , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Lluvia , Luz Solar , Agua/farmacologíaRESUMEN
*Deep root water uptake in tropical Amazonian forests has been a major discovery during the last 15 yr. However, the effects of extended droughts, which may increase with climate change, on deep soil moisture utilization remain uncertain. *The current study utilized a 1999-2005 record of volumetric water content (VWC) under a throughfall exclusion experiment to calibrate a one-dimensional model of the hydrologic system to estimate VWC, and to quantify the rate of root uptake through 11.5 m of soil. *Simulations with root uptake compensation had a relative root mean square error (RRMSE) of 11% at 0-40 cm and < 5% at 350-1150 cm. The simulated contribution of deep root uptake under the control was c. 20% of water demand from 250 to 550 cm and c. 10% from 550 to 1150 cm. Furthermore, in years 2 (2001) and 3 (2002) of throughfall exclusion, deep root uptake increased as soil moisture was available but then declined to near zero in deep layers in 2003 and 2004. *Deep root uptake was limited despite high VWC (i.e. > 0.30 cm(3) cm(-3)). This limitation may partly be attributable to high residual water contents (theta(r)) in these high-clay (70-90%) soils or due to high soil-to-root resistance. The ability of deep roots and soils to contribute increasing amounts of water with extended drought will be limited.
Asunto(s)
Sequías , Raíces de Plantas/metabolismo , Suelo , Árboles/fisiología , Agua/metabolismo , Brasil , Calibración , Simulación por Computador , Modelos Biológicos , Transpiración de Plantas/fisiología , LluviaRESUMEN
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.
RESUMEN
Recent climate talks in Copenhagen reaffirmed the crucial role of reducing emissions from deforestation and degradation (REDD). Creating and strengthening indigenous lands and other protected areas represents an effective, practical, and immediate REDD strategy that addresses both biodiversity and climate crises at once.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Brasil , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecosistema , Humanos , Cooperación Internacional/legislación & jurisprudenciaAsunto(s)
Conservación de los Recursos Naturales , Árboles , Agricultura/economía , Crianza de Animales Domésticos/economía , Animales , Brasil , Bovinos , Cambio Climático , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/estadística & datos numéricos , Costos y Análisis de Costo , Política PúblicaRESUMEN
Logging has been a much maligned feature of frontier development in the Amazon. Most discussions ignore the fact that logging can be part of a renewable, environmentally benign, and broadly equitable economic activity in these remote places. We estimate there to be some 4.5 +/- 1.35 billion m(3) of commercial timber volume in the Brazilian Amazon today, of which 1.2 billion m(3) is currently profitable to harvest, with a total potential stumpage value of $15.4 billion. A successful forest sector in the Brazilian Amazon will integrate timber harvesting on private lands and on unprotected and unsettled government lands with timber concessions on public lands. If a legal, productive, timber industry can be established outside of protected areas, it will deliver environmental benefits in synergy with those provided by the region's network of protected areas, the latter of which we estimate to have an opportunity cost from lost timber revenues of $2.3 billion over 30 years. Indeed, on all land accessible to harvesting, the timber industry could produce an average of more than 16 million m(3) per year over a 30-year harvest cycle-entirely outside of current protected areas-providing $4.8 billion in returns to landowners and generating $1.8 billion in sawnwood sales tax revenue. This level of harvest could be profitably complemented with an additional 10% from logging concessions on National Forests. This advance, however, should be realized only through widespread adoption of reduced impact logging techniques.
Asunto(s)
Conservación de los Recursos Naturales/economía , Agricultura Forestal/economía , Brasil , Comercio , ÁrbolesRESUMEN
Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.