Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14844, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050417

RESUMEN

Ecological Stoichiometry (ES) and the Metabolic Theory of Ecology (MTE) are the main theories used to explain consumers' nutrient recycling. ES posits that imbalances between an animal's body and its diet stoichiometry determine its nutrient excretion rates, whereas the MTE predicts that excretion reflects metabolic activity arising from body size and temperature. We measured nitrogen, phosphorus and N:P excretion, body N:P stoichiometry, body size, and temperature for 12 fish species from a Brazilian stream. We fitted competing models reflecting different combinations of ES (body N:P, armor classification, diet group) and MTE (body size, temperature) variables. Only body size predicted P excretion rates, while N excretion was predicted by body size and time of day. N:P excretion was not explained by any variable. There was no interspecific difference in size-scaling coefficients neither for N nor for P. Fitted size scaling coefficients were lower than the MTE prediction of 0.75 for N (0.58), and for P (0.56). We conclude that differences in nutrient excretion among species within a shared environment primarily reflect contrasts in metabolic rates arising from body size, rather than disparities between consumer and resource stoichiometry. Our findings support the MTE as the primary framework for predicting nutrient excretion rates.


Asunto(s)
Ecosistema , Ríos , Animales , Tamaño Corporal , Peces/metabolismo , Nitrógeno/metabolismo , Nutrientes , Fósforo/metabolismo
2.
Sci Total Environ ; 817: 152784, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34995604

RESUMEN

Deforestation affects the ecological integrity of rivers and streams, threatening biodiversity and ecosystem services worldwide. However, few studies have strictly analyzed the effect of the functional responses of tropical streams to changes in forest cover since deforested basins are usually also influenced by confounding anthropogenic inputs. Here we address tropical streams and test whether the stable isotopic ratios of nitrogen (N, δ15N) and carbon (C, δ13C) and the ratio of C:N of ecosystem components vary along a forest cover gradient. We also assess the ecological integrity of streams by in situ measurements using physical features commonly used in stream quality assessments. The results showed that the δ15N of most aquatic components, δ13C of particulate matter and omnivorous fish, and C:N of particulate matter and algae vary significantly with forest cover, indicating the role of terrestrial vegetation in regulating stream biogeochemistry. The dual stable isotope analysis satisfactorily indicated the changes in terrestrial-aquatic connections regarding both N and C cycles, thus showing the role of algae and particulate matter in influencing stream fauna through food web transfers. Our results support the use of stable isotopes to monitor watershed deforestation and highlight the need for reassessment of the effects of anthropogenic inputs on δ15N increase in globally distributed inland waters since the loss of forest is a significant cause in itself.


Asunto(s)
Nitrógeno , Ríos , Animales , Carbono , Isótopos de Carbono , Ecosistema , Bosques , Isótopos de Nitrógeno/análisis
3.
Mar Environ Res ; 174: 105559, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35021140

RESUMEN

The azooxanthellate corals Tubastraea coccinea and T. tagusensis invaded the Brazilian coast in the 1980s and is still in expansion, favored by lower predation and competition pressure in their new habitats. Interestingly, the native sponge Desmapsamma anchorata has been observed overgrowing these corals. Considering that competitive displacement is expected to play a major role in the successful outcome of an invasion, the present study tested the physical and chemical mechanisms possibly involved in the competition between D. anchorata and the Tubastraea corals through field and aquaria experiments as well as the Raman spectroscopy technique for chemical analysis. Our results showed that the sponge grew in all directions including over Tubastraea colonies and regardless of its presence. There was no evidence of a specific chemical response among sponges or corals. However, we observed the extrusion of mesenteric filaments and tentacles of corals and the projection of sponge tissue during interspecific interaction, which suggests that physical imposition plays a key role for space competition at micro scales. Given the interspersed nature of benthic species distributions and the fast expansion of Tubastraea, it is unlikely that D. anchorata or any other sponges could serve a biological control against these invasive corals at larger scales, but our results showed that at a microscale they can withstand the corals presence and even outgrow them locally.


Asunto(s)
Antozoos , Animales , Brasil , Ecosistema , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...