Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Chem Sci ; 15(18): 6789-6799, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725500

RESUMEN

Prostate-specific membrane antigen (PSMA) is a tumor-associated protein that has been successfully targeted with small organic ligands and monoclonal antibodies. Pluvicto™ is a PSMA-targeted radioligand therapeutic (RLT) recently approved by the FDA for the treatment of metastatic castration-resistant prostate cancer (2022 FDA marketing authorization). Although a large Phase III clinical trial (VISION trial) demonstrated clinical benefits in patients treated with Pluvicto™, the therapeutic window of the drug is narrowed by its undesired accumulation in healthy organs. Glutamate carboxypeptidase III (GCPIII), an enzyme sharing 70% identity with PSMA, may be responsible for the off-target accumulation of PSMA-RLTs in salivary glands and kidneys. In this work, we designed and synthesized affinity and selectivity maturation DNA-encoded chemical libraries (ASM-DELs) comprising 18'284'658 compounds that were screened in parallel against PSMA and GCPIII with the aim to identify potent and selective PSMA ligands for tumor-targeting applications. Compound A70-B104 was isolated as the most potent and selective ligand (KD of 900 pM for PSMA, KD of 40 nM for GCPIII). 177Lu-A70-B104-DOTA, a radiolabeled derivative of compound A70-B104, presented selective accumulation in PSMA-positive cancer lesions (i.e., 7.4% ID g-1, 2 hour time point) after systemic administration in tumor-bearing mice. The results of autoradiography experiments showed that 177Lu-A70-B104-DOTA selectively binds to PSMA-positive cancer tissues, while negligible binding on human salivary glands was observed.

2.
J Med Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716576

RESUMEN

Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.

3.
Mol Cancer Ther ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38638035

RESUMEN

Metastatic colorectal cancer (mCRC) remains a leading cause of cancer-related deaths, with a 5-year survival rate of only 15%. T cell engaging bispecific antibodies (TCBs) represent a class of biopharmaceuticals that redirect cytotoxic T cells towards tumor cells, thereby turning immunologically "cold" tumors "hot." The carcinoembryonic antigen (CEA) is an attractive tumor-associated antigen (TAA) that is overexpressed in over 98% of CRC patients. In this study, we report the comparison of four different TCB formats employing the antibodies F4 (targeting human CEA) and 2C11 (targeting mouse CD3ε). These formats include both antibody fragment- and IgG-based constructs, with either one or two binding specificities of the respective antibodies. The 2+1 arrangement, using an anti-CEA single-chain diabody (scDbCEA) fused to an anti-CD3 single-chain variable fragment (scFvCD3), emerged as the most potent design, showing tumor killing at subnanomolar concentrations across three different CEA+ cell lines. The in vitro activity was three times greater in C57BL/6 mouse colon adenocarcinoma cells (MC38) expressing high levels of CEA compared to those expressing low levels, highlighting the impact of CEA antigen density in this assay. The optimal TCB candidate was tested in two different immunocompetent mouse models of colorectal cancer and showed tumor growth retardation. Ex vivo analysis of tumor infiltrates showed an increase in CD4+ and CD8+ T cells upon TCB treatment. This study suggests that bivalent tumor targeting, monovalent T cell targeting, and a short spatial separation are promising characteristics for CEA targeting TCBs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38563883

RESUMEN

PURPOSE: Pluvicto™ ([177Lu]Lu-PSMA-617), a radioligand therapeutic targeting prostate-specific membrane antigen (PSMA), has been recently approved for the treatment of metastatic castration-resistant prostate cancer (mCRPR). The drug suffers from salivary gland and kidney uptake that prevents its dose escalation to potentially curative doses. In this work, we sought to potentiate the in vivo anti-cancer activity of Pluvicto™ by combining it with L19-IL2, a clinical-stage investigational medicinal product based on tumor-targeted interleukin-2. METHODS: We established a new PSMA-expressing model (HT-1080.hPSMA) and validated it using a fluoresceine analogue of PSMA-617 (compound 1). The HT-1080.hPSMA model was used to study the saturation and tumor retention of Pluvicto™ (compound 2) and to run combination therapy studies with L19-IL2. To complement our understanding of the mechanism of action of this novel combination, we conducted proteomics experiments on tumor samples after therapy with Pluvicto™ alone or in combination with the immunocytokine. RESULTS: High, selective, and long-lived tumor uptake was observed for Pluvicto™ (2) in the novel HT-1080.hPSMA model. Therapy studies in HT-1080.hPSMA tumor-bearing mice revealed that the combination of Pluvicto™ (2) plus L19-IL2 mediated curative and durable responses in all animals. Potent in vivo anti-cancer activity was observed solely for the combination modality, at doses that were well tolerated by treated animals. Proteomics studies indicated that L19-IL2 boosts the activation of the immune system in animals pre-treated with Pluvicto™. CONCLUSION: The therapeutic efficacy of Pluvicto™ at low radioactive doses can be effectively enhanced by the combination with L19-IL2. Our findings warrant further clinical exploration of this novel combination modality.

5.
Nat Biotechnol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689026
6.
EMBO Mol Med ; 16(4): 904-926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448543

RESUMEN

Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.


Asunto(s)
Citocinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia
7.
J Control Release ; 367: 779-790, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346501

RESUMEN

Small molecule-drug conjugates (SMDCs) are increasingly considered as a therapeutic alternative to antibody-drug conjugates (ADCs) for cancer therapy. OncoFAP is an ultra-high affinity ligand of Fibroblast Activation Protein (FAP), a stromal tumor-associated antigen overexpressed in a wide variety of solid human malignancies. We have recently reported the development of non-internalizing OncoFAP-based SMDCs, which are activated by FAP thanks to selective proteolytic cleavage of the -GlyPro- linker with consequent release of monomethyl auristatin E (MMAE) in the tumor microenvironment. In this article, we describe the generation and the in vivo characterization of FAP-cleavable OncoFAP-drug conjugates based on potent topoisomerase I inhibitors (DXd, SN-38, and exatecan) and an anti-tubulin payload (MMAE), which are already exploited in clinical-stage and approved ADCs. The Glycine-Proline FAP-cleavable technology was directly benchmarked against linkers found in Adcetris™, Enhertu™, and Trodelvy™ structures by means of in vivo therapeutic experiments in mice bearing tumors with cellular or stromal FAP expression. OncoFAP-GlyPro-Exatecan and OncoFAP-GlyPro-MMAE emerged as the most efficacious anti-cancer therapeutics against FAP-positive cellular models. OncoFAP-GlyPro-MMAE exhibited a potent antitumor activity also against stromal models, and was therefore selected for clinical development.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Tubulina (Proteína) , Microambiente Tumoral , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Camptotecina/uso terapéutico , Línea Celular Tumoral
8.
Adv Respir Med ; 92(1): 27-35, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38247549

RESUMEN

BACKGROUND: Pathogenesis of pulmonary hypertension (PH) is a multifactorial process driven by inflammation and pulmonary vascular remodeling. To target these two aspects of PH, we recently tested a novel treatment: Interleukin-9 (IL9) fused to F8, an antibody that binds to the extra-domain A of fibronectin (EDA+ Fn). As EDA+ Fn is not found in healthy adult tissue but is expressed during PH, IL9 is delivered specifically to the tissue affected by PH. We found that F8IL9 reduced pulmonary vascular remodeling and attenuated PH compared with sham-treated mice. PURPOSE: To evaluate possible F8IL9 effects on PH-associated inflammatory processes, we analysed the expression of genes involved in pulmonary immune responses. METHODS: We applied the monocrotaline (MCT) model of PH in mice (n = 44). Animals were divided into five experimental groups: sham-induced animals without PH (control, n = 4), MCT-induced PH without treatment (PH, n = 8), dual endothelin receptor antagonist treatment (dual ERA, n = 8), F8IL9 treatment (n = 12, 2 formats with n = 6 each), or with KSFIL9 treatment (KSFIL9, n = 12, 2 formats with n = 6 each, KSF: control antibody with irrelevant antigen specificity). After 28 days, a RT-PCR gene expression analysis of inflammatory response (84 genes) was performed in the lung. RESULTS: Compared with the controls, 19 genes exhibited relevant (+2.5-fold) upregulation in the PH group without treatment. Gene expression levels in F8IL9-treated lung tissue were reduced compared to the PH group without treatment. This was the case especially for CCL20, CXCL5, C-reactive protein, pentraxin related (CRPPR), and Kininogen-1 (KNG1). CONCLUSION: In accordance with the hypothesis stated above, F8IL9 treatment diminished the upregulation of some genes associated with inflammation in a PH animal model. Therefore, we hypothesize that IL9-based immunocytokine treatment will likely modulate various inflammatory pathways.


Asunto(s)
Hipertensión Pulmonar , Interleucina-9 , Animales , Ratones , Anticuerpos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inmunología , Inmunoconjugados/uso terapéutico , Inflamación/tratamiento farmacológico , Interleucina-9/inmunología , Interleucina-9/uso terapéutico , Pulmón , Remodelación Vascular , Modelos Animales de Enfermedad
9.
Front Pharmacol ; 14: 1320524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125888

RESUMEN

Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.

10.
Chem Sci ; 14(43): 12026-12033, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969600

RESUMEN

DNA-encoded chemical libraries (DELs) are powerful drug discovery tools, enabling the parallel screening of millions of DNA-barcoded compounds. We investigated how the DEL input affects the hit discovery rate in DEL screenings. Evaluation of selection fingerprints revealed that the use of approximately 105 copies of each library member is required for the confident identification of nanomolar hits, using generally applicable methodologies.

11.
Glob Chall ; 7(10): 2300088, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37829677

RESUMEN

Neutralizing monoclonal antibodies have achieved great efficacy and safety for the treatment of numerous infectious diseases. However, their neutralization potency is often rapidly lost when the target antigen mutates. Instead of isolating new antibodies each time a pathogen variant arises, it can be attractive to adapt existing antibodies, making them active against the new variant. Potential benefits of this approach include reduced development time, cost, and regulatory burden. Here a methodology is described to rapidly evolve neutralizing antibodies of proven activity, improving their function against new pathogen variants without losing efficacy against previous ones. The reported procedure is based on structure-guided affinity maturation using combinatorial mutagenesis and phage display technology. Its use against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is demonstrated, but it is suitable for any other pathogen. As proof of concept, the method is applied to CoV-X2, a human bispecific antibody that binds with high affinity to the early SARS-CoV-2 variants but lost neutralization potency against Delta. Antibodies emerging from the affinity maturation selection exhibit significantly improved neutralization potency against Delta and no loss of efficacy against the other viral sequences tested. These results illustrate the potential application of structure-guided affinity maturation in facilitating the rapid adaptation of neutralizing antibodies to pathogen variants.

12.
Nat Biomed Eng ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798444

RESUMEN

On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.

13.
J Nucl Med ; 64(12): 1934-1940, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734838

RESUMEN

We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.


Asunto(s)
Interleucina-2 , Neoplasias , Animales , Ratones , Interleucina-2/uso terapéutico , Distribución Tisular , Ligandos , Proteómica , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
15.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37583386

RESUMEN

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

16.
Proc Natl Acad Sci U S A ; 120(34): e2304071120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585458

RESUMEN

Class IA phosphoinositide 3-kinase alpha (PI3Kα) is an important drug target because it is one of the most frequently mutated proteins in human cancers. However, small molecule inhibitors currently on the market or under development have safety concerns due to a lack of selectivity. Therefore, other chemical scaffolds or unique mechanisms of catalytic kinase inhibition are needed. Here, we report the cryo-electron microscopy structures of wild-type PI3Kα, the dimer of p110α and p85α, in complex with three Y-shaped ligands [cpd16 (compound 16), cpd17 (compound 17), and cpd18 (compound 18)] of different affinities and no inhibitory effect on the kinase activity. Unlike ATP-competitive inhibitors, cpd17 adopts a Y-shaped conformation with one arm inserted into a binding pocket formed by R770 and W780 and the other arm lodged in the ATP-binding pocket at an angle that is different from that of the ATP phosphate tail. Such a special interaction induces a conformation of PI3Kα resembling that of the unliganded protein. These observations were confirmed with two isomers (cpd16 and cpd18). Further analysis of these Y-shaped ligands revealed the structural basis of differential binding affinities caused by stereo- or regiochemical modifications. Our results may offer a different direction toward the design of therapeutic agents against PI3Kα.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ligandos , Microscopía por Crioelectrón , Adenosina Trifosfato/metabolismo
17.
Bioconjug Chem ; 34(7): 1205-1211, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37399501

RESUMEN

We present the first in vivo comparative evaluation of chemically defined antibody-drug conjugates (ADCs), small molecule-drug conjugates (SMDCs), and peptide-drug conjugates (PDCs) targeting and activated by fibroblast activation protein (FAP) in solid tumors. Both the SMDC (OncoFAP-Gly-Pro-MMAE) and the ADC (7NP2-Gly-Pro-MMAE) candidates delivered high amounts of active payload (i.e., MMAE) selectively at the tumor site, thus producing a potent antitumor activity in a preclinical cancer model.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Fibroblastos , Oligopéptidos , Péptidos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nat Chem ; 15(10): 1431-1443, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37400597

RESUMEN

DNA-encoded chemical libraries (DELs) consist of large chemical compound collections individually linked to DNA barcodes, facilitating pooled construction and screening. However, screening campaigns often fail if the molecular arrangement of the building blocks is not conducive to an efficient interaction with a protein target. Here we postulated that the use of rigid, compact and stereo-defined central scaffolds for DEL synthesis may facilitate the discovery of very specific ligands capable of discriminating between closely related protein targets. We synthesized a DEL comprising 3,735,936 members, featuring the four stereoisomers of 4-aminopyrrolidine-2-carboxylic acid as central scaffolds. The library was screened in comparative selections against pharmaceutically relevant targets and their closely related protein isoforms. Hit validation results revealed a strong impact of stereochemistry, with large affinity differences between stereoisomers. We identified potent isozyme-selective ligands against multiple protein targets. Some of these hits, specific to tumour-associated antigens, demonstrated tumour-selective targeting in vitro and in vivo. Collectively, constructing DELs with stereo-defined elements contributed to high library productivity and ligand selectivity.

19.
ACS Omega ; 8(28): 25090-25100, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483198

RESUMEN

DNA-Encoded Chemical Libraries (DELs) have emerged as efficient and cost-effective ligand discovery tools, which enable the generation of protein-ligand interaction data of unprecedented size. In this article, we present an approach that combines DEL screening and instance-level deep learning modeling to identify tumor-targeting ligands against carbonic anhydrase IX (CAIX), a clinically validated marker of hypoxia and clear cell renal cell carcinoma. We present a new ligand identification and hit-to-lead strategy driven by machine learning models trained on DELs, which expand the scope of DEL-derived chemical motifs. CAIX-screening datasets obtained from three different DELs were used to train machine learning models for generating novel hits, dissimilar to elements present in the original DELs. Out of the 152 novel potential hits that were identified with our approach and screened in an in vitro enzymatic inhibition assay, 70% displayed submicromolar activities (IC50 < 1 µM). To generate lead compounds that are functionalized with anticancer payloads, analogues of top hits were prioritized for synthesis based on the predicted CAIX affinity and synthetic feasibility. Three lead candidates showed accumulation on the surface of CAIX-expressing tumor cells in cellular binding assays. The best compound displayed an in vitro KD of 5.7 nM and selectively targeted tumors in mice bearing human renal cell carcinoma lesions. Our results demonstrate the synergy between DEL and machine learning for the identification of novel hits and for the successful translation of lead candidates for in vivo targeting applications.

20.
MAbs ; 15(1): 2220839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288872

RESUMEN

Antibody-based therapeutics represent an important class of biopharmaceuticals in cancer immunotherapy. CD3 bispecific T-cell engagers activate cytotoxic T-cells and have shown remarkable clinical outcomes against several hematological malignancies. The absence of a costimulatory signal through CD28 typically leads to insufficient T-cell activation and early exhaustion. The combination of CD3 and CD28 targeting products offers an attractive strategy to boost T-cell activity. However, the development of CD28-targeting therapies ceased after TeGenero's Phase 1 trial in 2006 evaluating a superagonistic anti-CD28 antibody (TGN1412) resulted in severe life-threatening side effects. Here, we describe the generation of a novel fully human anti-CD28 antibody termed "E1P2" using phage display technology. E1P2 bound to human and mouse CD28 as shown by flow cytometry on primary human and mouse T-cells. Epitope mapping revealed a conformational binding epitope for E1P2 close to the apex of CD28, similar to its natural ligand and unlike the lateral epitope of TGN1412. E1P2, in contrast to TGN1412, showed no signs of in vitro superagonistic properties on human peripheral blood mononuclear cells (PBMCs) using different healthy donors. Importantly, an in vivo safety study in humanized NSG mice using E1P2, in direct comparison and contrast to TGN1412, did not cause cytokine release syndrome. In an in vitro activity assay using human PBMCs, the combination of E1P2 with CD3 bispecific antibodies enhanced tumor cell killing and T-cell proliferation. Collectively, these data demonstrate the therapeutic potential of E1P2 to improve the activity of T-cell receptor/CD3 activating constructs in targeted immunotherapeutic approaches against cancer or infectious diseases.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Humanos , Ratones , Animales , Leucocitos Mononucleares/metabolismo , Antígenos CD28 , Receptores de Antígenos de Linfocitos T/metabolismo , Epítopos/metabolismo , Activación de Linfocitos , Complejo CD3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...