Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36836891

RESUMEN

Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.

2.
Plants (Basel) ; 11(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956510

RESUMEN

Poplar is one of the most important forest trees because of its high economic value. Thanks to the fast-growing rate, easy vegetative propagation and transformation, and availability of genomic resources, poplar has been considered the model species for forest genetics, genomics, and breeding. Being a field-growing tree, poplar is exposed to environmental threats, including biotic stresses that are becoming more intense and diffused because of global warming. Current poplar farming is mainly based on monocultures of a few elite clones and the expensive and long-term conventional breeding programmes of perennial tree species cannot face current climate-change challenges. Consequently, new tools and methods are necessary to reduce the limits of traditional breeding related to the long generation time and to discover new sources of resistance. Recent advances in genomics, marker-assisted selection, genomic prediction, and genome editing offer powerful tools to efficiently exploit the Populus genetic diversity and allow enabling molecular breeding to support accurate early selection, increasing the efficiency, and reducing the time and costs of poplar breeding, that, in turn, will improve our capacity to face or prevent the emergence of new diseases or pests.

3.
PLoS One ; 11(3): e0152569, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27022954

RESUMEN

The genus Populus represents one of the most economically important groups of forest trees. It is composed by approximately 30 species used for wood and non-wood products, phytoremediation and biomass. Poplar is subjected to several biological and environmental threats although, compared to annual crops, we know far less about the genetic bases of biotic stress resistance. Woolly poplar aphid (Phloeomyzus passerinii) is considered a main pest of cultivated poplars in European and American countries. In this work we present two high density linkage maps in poplar obtained by a genotyping by sequencing (GBS) approach and the identification of QTLs involved in Ph. passerinii resistance. A total of 5,667 polymorphic markers (5,606 SNPs and 61 SSRs) identified on expressed sequences have been used to genotype 131 plants of an F1 population P ×canadensis obtained by an interspecific mate between Populus deltoides (resistant to woolly poplar aphid) and Populus nigra (susceptible to woolly poplar aphid). The two linkage maps, obtained following the two-way pseudo-testcross mapping strategy, have been used to investigate the genetic bases of woolly poplar aphid resistance. One major QTL and two QTLs with minor effects (mapped on LGV, LGXVI and LG XIX) explaining the 65.8% of the genetic variance observed in the progeny in response to Ph. passerinii attack were found. The high density coverage of functional markers allowed the identification of three genes belonging to disease resistance pathway as putative candidates for P. deltoides resistance to woolly poplar aphid. This work is the first report on genetic of woolly poplar aphid genetic resistance and the resistant loci associated markers identified represent a valuable tool in resistance poplar breeding programs.


Asunto(s)
Áfidos/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Populus/genética , Populus/parasitología , Sitios de Carácter Cuantitativo/genética , Análisis de Varianza , Animales , Secuencia de Bases , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Anotación de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Populus/inmunología , Especificidad de la Especie
4.
Int J Biol Sci ; 10(10): 1159-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25516714

RESUMEN

Ultraviolet (UV) radiations alter a number of metabolic functions in vivant. They produce damages to lipids, nucleic acids and proteins, generating reactive oxygen species such as singlet oxygen (O2), hydroxyl radical (HO) and superoxide anion (O2 (-)). Plants and animals, after their water emersion, have developed biochemical mechanisms to protect themselves from that environmental threat through a common strategy. Melanins in animals and flavonoids in plants are antioxidant pigments acting as free radical scavenging mechanisms. Both are phenol compounds constitutively synthesized and enhanced after exposure to UV rays, often conferring a red-brown-dark tissue pigmentation. Noteworthy, beside anti-oxidant scavenging activity, melanins and flavonoids have acquired secondary functions that, both in plants and animals, concern reproductions and fitness. Plants highly pigmented are more resistant to biotic and abiotic stresses. Darker wild vertebrates are generally more aggressive, sexually active and resistant to stress than lighter individuals. Flavonoids have been associated with signal attraction between flowers and insects and with plant-plant interaction. Melanin pigmentation has been proposed as trait in bird communication, acting as honest signals of quality. This review shows how the molecular mechanisms leading to tissue pigmentation have many functional analogies between plants and animals and how their origin lies in simpler organisms such as Cyanobacteria. Comparative studies between plant and animal kingdoms can reveal new insight of the antioxidant strategies in vivant.


Asunto(s)
Antioxidantes/metabolismo , Evolución Biológica , Flavonoides/metabolismo , Depuradores de Radicales Libres/metabolismo , Melaninas/metabolismo , Redes y Vías Metabólicas/fisiología , Pigmentación/fisiología , Animales , Betalaínas/química , Betalaínas/metabolismo , Aptitud Genética/fisiología , Estructura Molecular , Plantas , Reproducción/fisiología , Rayos Ultravioleta/efectos adversos
5.
Phytopathology ; 95(7): 800-7, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18943013

RESUMEN

ABSTRACT Tomato hybrids obtained from homozygous progeny of line 30-4, engineered for Tomato spotted wilt virus (TSWV) resistance, were tested under field conditions in two locations with their corresponding nontransgenic hybrids. No transgenic hybrid became infected, but 33 to 50% of plants of each nontransgenic hybrid became infected with a severe reduction of marketable fruit production. The transgenic hybrids conformed to the standard agronomic characteristics of the corresponding nontransgenic ones. Fruit were collected from the nontransgenic plots included in the experimental field and from border rows, and seed were used to estimate the flow of the transgene via pollen. No transgene flow was detected in the protected crops; however, in the open field experiment, 0.32% of tomato seedlings were found to contain the genetic modification. Immunity to TSWV infection in 30-4 hybrids was confirmed in laboratory conditions using mechanical inoculation and grafting. Thrips inoculation in leaf discs of line 30-4 demonstrated that TSWV replication was inhibited at the primary infection site but not in leaf discs of a commercial hybrid containing the naturally occurring resistance gene Sw-5. Due to the high economic value of tomato crops worldwide and the importance of TSWV, the engineered resistance described here is of practical value for breeding into cultivars of commercial interest, because it could be combined with naturally occurring resistance, thus greatly reducing the ability of the virus to develop resistance-breaking strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA