Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 6(1): 59-72, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168988

RESUMEN

Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.


Asunto(s)
Caulobacter crescentus/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Guanosina Pentafosfato/metabolismo , Sistemas de Mensajero Secundario/genética , Transferasas/metabolismo , Sitios de Unión/fisiología , Unión Competitiva/fisiología , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Glucosa/metabolismo , Oxidación-Reducción , Transducción de Señal/genética
2.
Nat Commun ; 11(1): 816, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041947

RESUMEN

Bacteria adapt their growth rate to their metabolic status and environmental conditions by modulating the length of their G1 period. Here we demonstrate that a gradual increase in the concentration of the second messenger c-di-GMP determines precise gene expression during G1/S transition in Caulobacter crescentus. We show that c-di-GMP stimulates the kinase ShkA by binding to its central pseudo-receiver domain, activates the TacA transcription factor, and initiates a G1/S-specific transcription program leading to cell morphogenesis and S-phase entry. Activation of the ShkA-dependent genetic program causes c-di-GMP to reach peak levels, which triggers S-phase entry and promotes proteolysis of ShkA and TacA. Thus, a gradual increase of c-di-GMP results in precise control of ShkA-TacA activity, enabling G1/S-specific gene expression that coordinates cell cycle and morphogenesis.


Asunto(s)
Caulobacter crescentus/citología , Caulobacter crescentus/genética , Ciclo Celular/genética , GMP Cíclico/análogos & derivados , Histidina Quinasa/metabolismo , Morfogénesis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/crecimiento & desarrollo , Caulobacter crescentus/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/química , Histidina Quinasa/genética , Fosforilación , Unión Proteica , Dominios Proteicos , Proteolisis , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo
3.
Elife ; 62017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091032

RESUMEN

The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus, which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/fisiología , Quimiotaxis , GMP Cíclico/análogos & derivados , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Caulobacter crescentus/química , GMP Cíclico/metabolismo , Flagelos/química , Unión Proteica , Proteoma/análisis
4.
mBio ; 8(2)2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325767

RESUMEN

When encountering surfaces, many bacteria produce adhesins to facilitate their initial attachment and to irreversibly glue themselves to the solid substrate. A central molecule regulating the processes of this motile-sessile transition is the second messenger c-di-GMP, which stimulates the production of a variety of exopolysaccharide adhesins in different bacterial model organisms. In Caulobacter crescentus, c-di-GMP regulates the synthesis of the polar holdfast adhesin during the cell cycle, yet the molecular and cellular details of this control are currently unknown. Here we identify HfsK, a member of a versatile N-acetyltransferase family, as a novel c-di-GMP effector involved in holdfast biogenesis. Cells lacking HfsK form highly malleable holdfast structures with reduced adhesive strength that cannot support surface colonization. We present indirect evidence that HfsK modifies the polysaccharide component of holdfast to buttress its cohesive properties. HfsK is a soluble protein but associates with the cell membrane during most of the cell cycle. Coincident with peak c-di-GMP levels during the C. crescentus cell cycle, HfsK relocalizes to the cytosol in a c-di-GMP-dependent manner. Our results indicate that this c-di-GMP-mediated dynamic positioning controls HfsK activity, leading to its inactivation at high c-di-GMP levels. A short C-terminal extension is essential for the membrane association, c-di-GMP binding, and activity of HfsK. We propose a model in which c-di-GMP binding leads to the dispersal and inactivation of HfsK as part of holdfast biogenesis progression.IMPORTANCE Exopolysaccharide (EPS) adhesins are important determinants of bacterial surface colonization and biofilm formation. Biofilms are a major cause of chronic infections and are responsible for biofouling on water-exposed surfaces. To tackle these problems, it is essential to dissect the processes leading to surface colonization at the molecular and cellular levels. Here we describe a novel c-di-GMP effector, HfsK, that contributes to the cohesive properties and stability of the holdfast adhesin in C. crescentus We demonstrate for the first time that c-di-GMP, in addition to its role in the regulation of the rate of EPS production, also modulates the physicochemical properties of bacterial adhesins. By demonstrating how c-di-GMP coordinates the activity and subcellular localization of HfsK, we provide a novel understanding of the cellular processes involved in adhesin biogenesis control. Homologs of HfsK are found in representatives of different bacterial phyla, suggesting that they play important roles in various EPS synthesis systems.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Adhesión Bacteriana , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Arilamina N-Acetiltransferasa/genética , Caulobacter crescentus/genética , GMP Cíclico/metabolismo , Eliminación de Gen
5.
J Bacteriol ; 198(1): 127-37, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26324450

RESUMEN

UNLABELLED: Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and specificity to c-di-GMP binding were confirmed using microscale thermophoresis with a hypothetical protein bearing a PilZ domain, an acyl coenzyme A dehydrogenase, and a two-component system response regulator, indicating that additional c-di-GMP binding candidates may be bona fide novel effectors. IMPORTANCE: In this study, 84 putative c-di-GMP binding proteins were identified in B. bacteriovorus, an obligate predatory bacterium whose lifestyle and reproduction are dependent on c-di-GMP signaling, using a c-di-GMP capture compound precipitation approach. This predicted complement covers metabolic, energy, transport, motility and regulatory pathways, and most of it is phase specific, i.e., 62 candidates bind the capture compound at defined modes of B. bacteriovorus lifestyle. Three of the putative binders further demonstrated specificity and high affinity to c-di-GMP via microscale thermophoresis, lending support for the presence of additional bona fide c-di-GMP effectors among the pulled-down protein repertoire.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bdellovibrio/fisiología , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Proteínas Bacterianas/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Unión Proteica , Transducción de Señal
6.
J Vis Exp ; (97)2015 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-25867682

RESUMEN

Considerable progress has been made during the last decade towards the identification and characterization of enzymes involved in the synthesis (diguanylate cyclases) and degradation (phosphodiesterases) of the second messenger c-di-GMP. In contrast, little information is available regarding the molecular mechanisms and cellular components through which this signaling molecule regulates a diverse range of cellular processes. Most of the known effector proteins belong to the PilZ family or are degenerated diguanylate cyclases or phosphodiesterases that have given up on catalysis and have adopted effector function. Thus, to better define the cellular c-di-GMP network in a wide range of bacteria experimental methods are required to identify and validate novel effectors for which reliable in silico predictions fail. We have recently developed a novel Capture Compound Mass Spectrometry (CCMS) based technology as a powerful tool to biochemically identify and characterize c-di-GMP binding proteins. This technique has previously been reported to be applicable to a wide range of organisms(1). Here we give a detailed description of the protocol that we utilize to probe such signaling components. As an example, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network. This study explains the CCMS procedure in detail, and establishes it as a powerful and versatile tool to identify novel components involved in small molecule signaling.


Asunto(s)
Proteínas Bacterianas/química , GMP Cíclico/análogos & derivados , Espectrometría de Masas/métodos , Pseudomonas aeruginosa/química , Proteínas Bacterianas/análisis , GMP Cíclico/análisis , GMP Cíclico/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal
7.
Nat Commun ; 5: 4081, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24939058

RESUMEN

Zinc-finger domain transcriptional regulators regulate a myriad of functions in eukaryotes. Interestingly, ancestral versions (MucR) from Alpha-proteobacteria control bacterial virulence/symbiosis. Whether virulence regulators can also control cell cycle transcription is unknown. Here we report that MucR proteins implement a hitherto elusive primordial S→G1 transcriptional switch. After charting G1-specific promoters in the cell cycle model Caulobacter crescentus by comparative ChIP-seq, we use one such promoter as genetic proxy to unearth two MucR paralogs, MucR1/2, as constituents of a quadripartite and homeostatic regulatory module directing the S→G1 transcriptional switch. Surprisingly, MucR orthologues that regulate virulence and symbiosis gene transcription in Brucella, Agrobacterium or Sinorhizobium support this S→G1 switch in Caulobacter. Pan-genomic ChIP-seq analyses in Sinorhizobium and Caulobacter show that this module indeed targets orthologous genes. We propose that MucR proteins and possibly other virulence regulators primarily control bacterial cell cycle (G1-phase) transcription, rendering expression of target (virulence) genes periodic and in tune with the cell cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter/fisiología , Fase G1/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Biológicos , Proteínas Represoras/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Proteínas Bacterianas/genética , Secuencia de Bases , Inmunoprecipitación de Cromatina , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Fase G1/genética , Regulación Bacteriana de la Expresión Génica/genética , Immunoblotting , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Puntos de Control de la Fase S del Ciclo Celular/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , beta-Galactosidasa
8.
J Proteomics ; 75(15): 4874-8, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22652488

RESUMEN

The second messenger cyclic di-GMP is a near-ubiquitous signaling molecule that globally alters bacterial cell physiology to promote biofilm formation and community behavior. Much progress was made in recent years towards the identification and characterization of diguanylate cyclases and phosphodiersterases, enzymes involved in the synthesis and degradation of this signaling compound. In contrast, our knowledge of the nature and mechanistic details of c-di-GMP effector proteins lags behind, primarily because effective tools for their specific enrichment and rapid analysis are missing. In this report we demonstrate that a novel tri-functional c-di-GMP-specific Capture Compound (cdG-CC) can be effectively used to identify and validate c-di-GMP binding proteins. The cdG-CC was able to specifically and efficiently pull down bona fide c-di-GMP effector proteins. Furthermore, in combination with mass spectrometry (CCMS), this technology robustly identified a substantial fraction of the known c-di-GMP signaling components directly from cell extracts of different model organisms. Finally, we applied the CCMS technique to profile c-di-GMP binding proteins of Pseudomonas aeruginosa and Salmonella enterica serovar typhimurium. Our studies establish CCMS as a powerful and versatile tool to identify and analyze components of the cellular c-di-GMP pathway in a wide range of different organisms.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Péptidos y Proteínas de Señalización Intracelular , Pseudomonas aeruginosa/química , Salmonella typhimurium/química , Proteínas Bacterianas/análisis , Proteínas Bacterianas/aislamiento & purificación , Proteínas Portadoras/análisis , Proteínas Portadoras/aislamiento & purificación , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo , Salmonella typhimurium/metabolismo
9.
Mol Microbiol ; 84(1): 147-65, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22394314

RESUMEN

In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Matriz Extracelular/metabolismo , Myxococcus xanthus/enzimología , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , GMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Myxococcus xanthus/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Quinasas/genética , Regulón
10.
J Mol Biol ; 385(5): 1445-55, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19101566

RESUMEN

The thermophilic eubacterium Thermus thermophilus belongs to one of the oldest branches of evolution and has a multilayered cell envelope that differs from that of modern Gram-negative bacteria. Its outer membrane contains integral outer membrane proteins (OMPs), of which only a few are characterized. TtoA, a new beta-barrel OMP, was identified by searching the genome sequence of strain HB27 for the presence of a C-terminal signature sequence. The structure of TtoA was determined to a resolution of 2.8 A, representing the first crystal structure of an OMP from a thermophilic bacterium. TtoA consists of an eight-stranded beta-barrel with a large extracellular part to which a divalent cation is bound. A five-stranded extracellular beta-sheet protrudes out of the membrane-embedded transmembrane barrel and is stabilized by a disulfide bridge. The edge of this beta-sheet forms crystal contacts that could mimic interactions with other proteins. In modern Gram-negative bacteria, the C-terminal signature sequence of OMPs is required for binding to an Omp85 family protein as a prerequisite for its assembly. We present hints that a similar assembly pathway exists in T. thermophilus by an in vitro binding assay, where unfolded TtoA binds to the Thermus Omp85 family protein TtOmp85, while a mutant without the signature sequence does not.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Modelos Moleculares , Thermus thermophilus/química , Secuencia de Aminoácidos , Cationes Bivalentes/química , Cristalografía por Rayos X , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
11.
Artículo en Inglés | MEDLINE | ID: mdl-18540069

RESUMEN

The cell envelope of the thermophilic bacterium Thermus thermophilus is multilayered and includes an outer membrane with integral outer membrane proteins that are not well characterized. The hypothetical protein TTC0834 from T. thermophilus HB27 was identified as a 22 kDa outer membrane protein containing eight predicted beta-strands. TTC0834 was expressed with an N-terminal His tag in T. thermophilus HB8 and detected in the S-layer/outer membrane envelope fraction. His-TTC0834 was purified and crystallized under various conditions. Native data sets were collected to 3.2 A resolution and the best diffracting crystals belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 166.67, c = 97.53 A.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Thermus thermophilus/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Genes Bacterianos , Histidina/química , Peso Molecular , Técnicas de Amplificación de Ácido Nucleico , Estructura Secundaria de Proteína , Thermus thermophilus/genética , Difracción de Rayos X
12.
J Bacteriol ; 190(13): 4568-75, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18456816

RESUMEN

Proteins belonging to the Omp85 family are involved in the assembly of beta-barrel outer membrane proteins or in the translocation of proteins across the outer membrane in bacteria, mitochondria, and chloroplasts. The cell envelope of the thermophilic bacterium Thermus thermophilus HB27 is multilayered, including an outer membrane that is not well characterized. Neither the precise lipid composition nor much about integral membrane proteins is known. The genome of HB27 encodes one Omp85-like protein, Omp85(Tt), representing an ancestral type of this family. We overexpressed Omp85(Tt) in T. thermophilus and purified it from the native outer membranes. In the presence of detergent, purified Omp85(Tt) existed mainly as a monomer, composed of two stable protease-resistant modules. Circular dichroism spectroscopy indicated predominantly beta-sheet secondary structure. Electron microscopy of negatively stained lipid-embedded Omp85(Tt) revealed ring-like structures with a central cavity of approximately 1.5 nm in diameter. Single-channel conductance recordings indicated that Omp85(Tt) forms ion channels with two different conducting states, characterized by conductances of approximately 0.4 nS and approximately 0.65 nS, respectively.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Thermus thermophilus/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Thermus thermophilus/ultraestructura
13.
Blood ; 110(10): 3610-7, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17684156

RESUMEN

The activating transcription factor-4 (ATF-4) is translationally induced under anoxic conditions, mediates part of the unfolded protein response following endoplasmic reticulum (ER) stress, and is a critical regulator of cell fate. Here, we identified the zipper II domain of ATF-4 to interact with the oxygen sensor prolyl-4-hydroxylase domain 3 (PHD3). The PHD inhibitors dimethyloxalylglycine (DMOG) and hypoxia, or proteasomal inhibition, all induced ATF-4 protein levels. Hypoxic induction of ATF-4 was due to increased protein stability, but was independent of the ubiquitin ligase von Hippel-Lindau protein (pVHL). A novel oxygen-dependent degradation (ODD) domain was identified adjacent to the zipper II domain. Mutations of 5 prolyl residues within this ODD domain or siRNA-mediated down-regulation of PHD3, but not of PHD2, was sufficient to stabilize ATF-4 under normoxic conditions. These data demonstrate that PHD-dependent oxygen-sensing recruits both the hypoxia-inducible factor (HIF) and ATF-4 systems, and hence not only confers adaptive responses but also cell fate decisions.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Dioxigenasas/fisiología , Oxígeno/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factor de Transcripción Activador 4/química , Secuencia de Aminoácidos , Hipoxia de la Célula/fisiología , Dioxigenasas/química , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
Mol Cell Biol ; 27(10): 3758-68, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17353276

RESUMEN

The heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-alpha subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-alpha for proteasomal destruction. We identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as a novel interactor of PHD2. Yeast two-hybrid, glutathione S-transferase pull-down, coimmunoprecipitation, colocalization, and mammalian two-hybrid studies confirmed specific FKBP38 interaction with PHD2, but not with PHD1 or PHD3. PHD2 and FKBP38 associated with their N-terminal regions, which contain no known interaction motifs. Neither FKBP38 mRNA nor protein levels were regulated under hypoxic conditions or after PHD inhibition, suggesting that FKBP38 is not a HIF/PHD target. Stable RNA interference-mediated depletion of FKBP38 resulted in increased PHD hydroxylation activity and decreased HIF protein levels and transcriptional activity. Reconstitution of FKBP38 expression abolished these effects, which were independent of the peptidyl prolyl cis/trans isomerase activity. Downregulation of FKBP38 did not affect PHD2 mRNA levels but prolonged PHD2 protein stability, suggesting that FKBP38 is involved in PHD2 protein regulation.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Sitios de Unión , Línea Celular , Estabilidad de Enzimas , Expresión Génica , Genes Reporteros , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión a Tacrolimus/genética , Técnicas del Sistema de Dos Híbridos
15.
Nature ; 444(7116): 226-9, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17086202

RESUMEN

Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system. EPSs have critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right. Here we describe the 2.26 A resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel alpha-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.


Asunto(s)
Cápsulas Bacterianas/química , Proteínas de la Membrana Bacteriana Externa/clasificación , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Polisacáridos Bacterianos/metabolismo , Cápsulas Bacterianas/metabolismo , Transporte Biológico , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Proteica , Propiedades de Superficie
16.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 3): 558-60, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993692

RESUMEN

A novel integral membrane lipoprotein, Wza, from Escherichia coli serotype O9a:K30 has been purified and crystallized. Wza is required for the surface expression of the serotype K30 group 1 capsular polysaccharide of E. coli; closely related homologues are found in other bacteria that produce extracellular polysaccharides. The Wza crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 94.6, b = 215.5, c = 218.5 A. A data set to 3.0 A with 99.8% completeness and an R(merge) of 10.5% has been collected from a single crystal.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Antígenos Bacterianos/biosíntesis , Antígenos de Superficie/biosíntesis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Polisacáridos/metabolismo , Homología Estructural de Proteína
17.
J Biol Chem ; 278(50): 49763-72, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14522970

RESUMEN

The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Membrana Celular/ultraestructura , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Polisacáridos/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Histidina/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Modelos Biológicos , Periplasma/metabolismo , Fenotipo , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo
18.
Infect Immun ; 70(11): 5990-6, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12379674

RESUMEN

Since the first occurrence of O139 Vibrio cholerae as a cause of cholera epidemics, this serogroup has been investigated intensively, and it has been found that its pathogenicity is comparable to that of O1 El Tor strains. O139 isolates express a thin capsule, composed of a polymer of repeating units structurally identical to the lipopolysaccharide (LPS) O side chain. In this study, we investigated the role of LPS O side chain and capsular polysaccharide (CPS) in intestinal colonization by with genetically engineered mutants. We constructed CPS-negative, CPS/LPS O side chain-negative, and CPS-positive/LPS O side chain-negative mutants. Furthermore, we constructed two mutants with defects in LPS core oligosaccharide (OS) assembly. Loss of LPS O side chain or CPS resulted in a approximately 30-fold reduction in colonization of the infant mouse small intestine, indicating that the presence of both LPS O side chain and CPS is important during the colonization process. The strain lacking both CPS and LPS O side chain and a CPS-positive, LPS O side chain-negative core OS mutant were both essentially unable to colonize. To characterize the role of surface polysaccharides in survival in the host intestine, resistance to several antimicrobial substances was investigated in vitro. These investigations revealed that the presence of CPS protects the cell against attack of the complement system and that an intact core OS is necessary for survival in the presence of bile.


Asunto(s)
Cápsulas Bacterianas/fisiología , Intestinos/microbiología , Lipopolisacáridos/toxicidad , Vibrio cholerae/patogenicidad , Animales , Cápsulas Bacterianas/química , Farmacorresistencia Bacteriana , Lipopolisacáridos/química , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Vibrio cholerae/efectos de los fármacos
19.
Infect Immun ; 70(5): 2419-33, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11953379

RESUMEN

We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.


Asunto(s)
Genes Bacterianos , Lipopolisacáridos/biosíntesis , Familia de Multigenes , Vibrio cholerae/genética , Secuencia de Aminoácidos , Transferencia de Gen Horizontal , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Vibrio cholerae/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA