RESUMEN
Aedes aegypti is a mosquito native to the African continent, which is now widespread in the tropical and subtropical regions of the world. In many regions, it represents a major challenge to public health, given its role in the cycle of transmission of important arboviruses, such as Dengue, Zika, and Chikungunya. Considering the epidemiological importance of Ae. aegypti, the present study sequenced the partial mitochondrial genome of a sample collected in the municipality of Balsas, in the Brazilian state of Maranhão, followed by High Throughput Sequencing and phylogenetic analyses. The mitochondrial sequence obtained here was 15,863 bp long, and contained 37 functional subunits (thirteen PCGs, twenty-two tRNAs and two rRNAs) in addition to a partial final portion rich in A+T. The data obtained here contribute to the enrichment of our knowledge of the taxonomy and evolutionary biology of this prominent disease vector. These findings represent an important advancement in the understanding of the characteristics of the populations of northeastern Brazil and provide valuable insights into the taxonomy and evolutionary biology of this prominent disease vector.
RESUMEN
West Nile virus is characterized as a neurotropic pathogen, which can cause West Nile fever and is transmitted by mosquitoes of the genus Culex. In 2018, the Instituto Evandro Chagas performed the first isolation of a WNV strain in Brazil from a horse brain sample. The present study aimed to evaluate the susceptibility of orally infected Cx. quinquefasciatus from the Amazon region of Brazil to become infected and transmit the WNV strain isolated in 2018. Oral infection was performed with blood meal artificially infected with WNV, followed by analysis of infection, dissemination, and transmission rates, as well as viral titers of body, head, and saliva samples. At the 21st dpi, the infection rate was 100%, the dissemination rate was 80%, and the transmission rate was 77%. These results indicate that Cx. quinquefasciatus is susceptible to oral infection by the Brazilian strain of WNV and may act as a possible vector of the virus since it was detected in saliva from the 21st dpi.
RESUMEN
West Nile virus is a flavivirus transmitted by mosquitoes, mainly of the genus Culex. In Brazil, serological studies have already indicated the circulation of the virus since 2003, with the first human case detected in 2014. The objective of the present paper is to report the first isolation of WNV in a Culex (Melanoconion) mosquito. Arthropods were collected by protected human attraction and CDC light bait, and taxonomically identified and analyzed by viral isolation, complement fixation and genomic sequencing tests. WNV was isolated from samples of Culex (Melanoconion) mosquitoes, and the sequencing analysis demonstrated that the isolated strain belonged to lineage 1a. The finding of the present study presents the first evidence of the isolation and genome sequencing of WNV in arthropods in Brazil.
RESUMEN
The genus Limatus (Diptera: Culicidae) are wild mosquitoes belonging to the Sabethini tribe that occurs in tropical countries and is related to transmission cycles of Orthobunyavirus (Bunyaviridae), particularly in the Amazon region. Given the unavailability of information related to evolutionary biology and molecular taxonomy aspects of this genus, we report here the first complete sequencing of the mitochondrial genome of Limatus durhamii Theobald, 1901. The NextSeq 500 platform was used for sample sequencing, and the mitochondrial sequence obtained was 14,875 bp long, comprising 37 functional subunits (13 PCGs, 22 tRNA and 02 rRNA). The phylogeny reconstructed by maximum likelihood based on the concatenation of all 13 PCGs corroborated the known taxonomic classification based most on aspects of the external morphology and few molecular studies. The data and information produced here may be useful in the future development of taxonomic and evolutionary studies for the genus, as well as the Culicidae family itself.
Asunto(s)
Culicidae , Genoma Mitocondrial , Orthobunyavirus , Animales , Funciones de Verosimilitud , Análisis de Secuencia de ADN , Filogenia , Orthobunyavirus/genéticaRESUMEN
The rapid and disorderly urbanization in the Amazon has resulted in the insertion of forest fragments into cities, causing the circulation of arboviruses, which can involve hematophagous arthropods and free-ranging birds in the transmission cycles in urban environments. This study aimed to evaluate the circulation of arboviruses in free-ranging birds and hematophagous arthropods captured in an Environmental Protection Area in the Belem metropolitan area, Brazil. Birds were captured using mist nets, and hematophagous arthropods were collected using a human protected attraction technique and light traps. The birds' sera were subjected to a hemagglutination inhibition test to detect antibodies against 29 arbovirus antigens. Arthropod macerates were inoculated into C6/36 and VERO cell cultures to attempt viral isolation and were tested using indirect immunofluorescence, subsequent genetic sequencing and submitted for phylogenetic analysis. Four bird sera were positive for arbovirus, and one batch of Psorophora ferox was positive for Flavivirus on viral isolation and indirect immunofluorescence. In addition, the Ilheus virus was detected in the sequencing and phylogenetic analysis. The presence of antibodies in sera from free-ranging birds and the isolation of Ilheus virus in Psorophora ferox indicate the circulation of arboviruses in forest remnants in the urban center of Belem.
Asunto(s)
Infecciones por Arbovirus , Arbovirus , Artrópodos , Culicidae , Animales , Humanos , Conservación de los Recursos Naturales , Nematocera , Filogenia , Aves , Bosques , Ecosistema , Infecciones por Arbovirus/veterinariaRESUMEN
The genus Aedes (Diptera: Culicidae) includes species of great epidemiological relevance, particularly involved in transmission cycles of leading arboviruses in the Brazilian Amazon region, such as the Zika virus (ZIKV), Dengue virus (DENV), Yellow fever virus (YFV), and Chikungunya virus (CHIKV). We report here the first putatively complete sequencing of the mitochondrial genomes of Brazilian populations of the species Aedes albopictus, Aedes scapularis and Aedes serratus. The sequences obtained showed an average length of 14,947 bp, comprising 37 functional subunits, typical in animal mitochondria (13 PCGs, 22 tRNA, and 2 rRNA). The phylogeny reconstructed by Maximum likelihood method, based on the concatenated sequences of all 13 PCGs produced at least two non-directly related groupings, composed of representatives of the subgenus Ochlerotatus and Stegomyia of the genus Aedes. The data and information produced here may be useful for future taxonomic and evolutionary studies of the genus Aedes, as well as the Culicidae family.
Asunto(s)
Aedes , Culicidae , Genoma Mitocondrial , Infección por el Virus Zika , Virus Zika , Animales , Culicidae/genética , Genoma Mitocondrial/genética , Mosquitos Vectores/genética , Filogenia , Virus Zika/genéticaRESUMEN
The genus Sabethes (Diptera: Culicidae) comprises species of great epidemiological relevance, particularly involved in transmission cycles of the Yellow fever virus in South America. Given the unavailability of information related to aspects of evolutionary biology and molecular taxonomy of species of this genus of mosquitoes, we report here the first sequencing of the mitochondrial genomes of Sabethes bipartipes, Sabethes cyaneus, Sabethes tarsopus, and Sabethes quasicyaneus. The sequences obtained showed an average length of 14,920 bp, comprising 37 functional genes (13 PCGs, 22 tRNA, and 02 rRNA). The phylogenies reconstructed by Maximum likelihood and Bayesian inference methods, based on the concatenated sequences of all 13 PCGs, produced similar topologies and strongly supported the monophyletic relationship between the Sabethes subgenera, corroborating the known taxonomic classification based on aspects of the external morphology of the taxa assessed. The data and information produced from the Sabethes species evaluated here may be useful for future taxonomic and evolutionary studies of the genus, as well as the Culicidae family.