Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5863, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735160

RESUMEN

Anthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services. We reveal that despite 13.5% of the mangrove distribution being currently strictly protected, all mangrove species are not adequately represented and many areas that provide disproportionally large ecosystem services are missed. Optimising the placement of future conservation efforts to protect 30% of global mangroves potentially safeguards an additional 16.3 billion USD of coastal property value, 6.1 million people, 1173.1 Tg C, and 50.7 million fisher days yr-1. Our findings suggest that there is a pressing need for including ecosystem services in protected area design and that strategic prioritisation and coordination of mangrove conservation could provide substantial benefits to human wellbeing.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Efectos Antropogénicos
2.
Ecol Appl ; 33(4): e2852, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946332

RESUMEN

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.


Asunto(s)
Conservación de los Recursos Naturales , Agua de Mar , Conservación de los Recursos Naturales/métodos , Concentración de Iones de Hidrógeno , Biodiversidad , Incertidumbre , Cambio Climático , Ecosistema
3.
Brain Stimul ; 13(2): 470-473, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31884186

RESUMEN

Metabolic feedback between the gut and the brain relayed via the vagus nerve contributes to energy homeostasis. We investigated in healthy adults whether non-invasive stimulation of vagal afferents impacts energy homeostasis via efferent effects on metabolism or digestion. In a randomized crossover design, we applied transcutaneous auricular vagus nerve stimulation (taVNS) while recording efferent metabolic effects using simultaneous electrogastrography (EGG) and indirect calorimetry. We found that taVNS reduced gastric myoelectric frequency (p = .008), but did not alter resting energy expenditure. We conclude that stimulating vagal afferents induces gastric slowing via vagal efferents without acutely affecting net energy expenditure at rest. Collectively, this highlights the potential of taVNS to modulate digestion by activating the dorsal vagal complex. Thus, taVNS-induced changes in gastric frequency are an important peripheral marker of brain stimulation effects.


Asunto(s)
Motilidad Gastrointestinal , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Adulto , Vías Aferentes/fisiología , Animales , Encéfalo/fisiología , Metabolismo Energético , Humanos , Masculino , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...