Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Am J Hypertens ; 37(4): 248-260, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150382

RESUMEN

BACKGROUND: Many hypertension therapeutics were developed prior to major advances in drug receptor theory. Moreover, newer drugs may take advantage of some of the newly understood modalities of receptor function. GOAL: The goal of this review is to provide an up-to-date summary of drug receptor theory. This is followed by a discussion of the drug classes recognized for treating hypertension to which new concepts in receptor theory apply. RESULTS: We raise ideas for mechanisms of potential new antihypertensive drugs and whether they may take advantage of new theories in drug-receptor interaction.


Asunto(s)
Hipertensión , Humanos , Hipertensión/tratamiento farmacológico , Antihipertensivos/uso terapéutico , Interacciones Farmacológicas , Receptores de Droga/uso terapéutico
2.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762086

RESUMEN

Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Vemurafenib/farmacología , Regulación hacia Arriba , Factor Rho , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Factores de Transcripción/genética , Proteínas de Punto de Control Inmunitario
3.
ACS Omega ; 8(17): 15650-15659, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151549

RESUMEN

The balance between protein degradation and protein synthesis is a highly choreographed process generally called proteostasis. Most intracellular protein degradation occurs through the ubiquitin-proteasome system (UPS). This degradation takes place through either a ubiquitin-dependent or a ubiquitin-independent proteasomal pathway. The ubiquitin-independent pathway selectively targets unfolded proteins, including intrinsically disordered proteins (IDPs). Dysregulation of proteolysis can lead to the accumulation of IDPs, seen in the pathogenesis of various diseases, including cancer and neurodegeneration. Therefore, the enhancement of the proteolytic activity of the 20S proteasome using small molecules has been identified as a promising pathway to combat IDP accumulation. Currently, there are a limited number of known small molecules that enhance the activity of the 20S proteasome, and few are observed to exhibit enhanced proteasome activity in cell culture. Herein, we describe the development of a high-throughput screening assay to identify cell-permeable proteasome enhancers by utilizing an AlphaLISA platform that measures the degradation of a GFP conjugated intrinsically disordered protein, ornithine decarboxylase (ODC). Through the screening of the Prestwick and NIH Clinical Libraries, a kinase inhibitor, erlotinib, was identified as a new 20S proteasome enhancer, which enhances the degradation of ODC in cells and α-synuclein in vitro.

4.
Am J Respir Cell Mol Biol ; 68(6): 638-650, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36780662

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a pathological condition of unknown etiology that results from injury to the lung and an ensuing fibrotic response that leads to the thickening of the alveolar walls and obliteration of the alveolar space. The pathogenesis is not clear, and there are currently no effective therapies for IPF. Small airway disease and mucus accumulation are prominent features in IPF lungs, similar to cystic fibrosis lung disease. The ATP12A gene encodes the α-subunit of the nongastric H+, K+-ATPase, which functions to acidify the airway surface fluid and impairs mucociliary transport function in patients with cystic fibrosis. It is hypothesized that the ATP12A protein may play a role in the pathogenesis of IPF. The authors' studies demonstrate that ATP12A protein is overexpressed in distal small airways from the lungs of patients with IPF compared with normal human lungs. In addition, overexpression of the ATP12A protein in mouse lungs worsened bleomycin induced experimental pulmonary fibrosis. This was prevented by a potassium competitive proton pump blocker, vonoprazan. These data support the concept that the ATP12A protein plays an important role in the pathogenesis of lung fibrosis. Inhibition of the ATP12A protein has potential as a novel therapeutic strategy in IPF treatment.


Asunto(s)
Fibrosis Quística , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , Fibrosis Quística/metabolismo , Bombas de Protones/metabolismo , Bombas de Protones/farmacología , Bombas de Protones/uso terapéutico , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Bleomicina/farmacología , Fibrosis , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/farmacología
5.
Br J Pharmacol ; 180(7): 927-942, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34767639

RESUMEN

BACKGROUND AND PURPOSE: Regulator of G-protein signalling 4 (RGS4) is a signal transduction protein that accelerates intrinsic GTPase activity of Gαi/o and Gαq subunits, suppressing GPCR signalling. Here, we investigate whether RGS4 modulates nociceptin/orphanin FQ (N/OFQ) opioid (NOP) receptor signalling and if this modulation has relevance for l-Dopa-induced dyskinesia. EXPERIMENTAL APPROACH: HEK293T cells transfected with NOP, NOP/RGS4 or NOP/RGS19 were challenged with N/OFQ and the small-molecule NOP agonist AT-403, using D1-stimulated cAMP levels as a readout. Primary rat striatal neurons and adult mouse striatal slices were challenged with either N/OFQ or AT-403 in the presence of the experimental RGS4 chemical probe, CCG-203920, and D1-stimulated cAMP or phosphorylated extracellular signal regulated kinase 1/2 (pERK) responses were monitored. In vivo, CCG-203920 was co-administered with AT-403 and l-Dopa to 6-hydroxydopamine hemilesioned rats, and dyskinetic movements, striatal biochemical correlates of dyskinesia (pERK and pGluR1 levels) and striatal RGS4 levels were measured. KEY RESULTS: RGS4 expression reduced NOFQ and AT-403 potency and efficacy in HEK293T cells. CCG-203920 increased N/OFQ potency in primary rat striatal neurons and potentiated AT-403 response in mouse striatal slices. CCG-203920 enhanced AT-403-mediated inhibition of dyskinesia and its biochemical correlates, without compromising its motor-improving effects. Unilateral dopamine depletion caused bilateral reduction of RGS4 levels, which was reversed by l-Dopa. l-Dopa acutely up-regulated RGS4 in the lesioned striatum. CONCLUSIONS AND IMPLICATIONS: RGS4 physiologically inhibits NOP receptor signalling. CCG-203920 enhanced NOP responses and improved the antidyskinetic potential of NOP receptor agonists, mitigating the effects of striatal RGS4 up-regulation occurring during dyskinesia expression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Ratones , Ratas , Humanos , Animales , Levodopa/farmacología , Analgésicos Opioides , Células HEK293 , Transducción de Señal , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Receptores Opioides/metabolismo , Nociceptina
6.
Pharmacol Res Perspect ; 10(6): e01028, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36426895

RESUMEN

Bleomycin-induced lung fibrosis is a debilitating disease, linked to high morbidity and mortality in chemotherapy patients. The MRTF/SRF transcription pathway has been proposed as a potential therapeutic target, as it is critical for myofibroblast differentiation, a hallmark of fibrosis. In human lung fibroblasts, the MRTF/SRF pathway inhibitor, CCG-257081, effectively decreased mRNA levels of downstream genes: smooth muscle actin and connective tissue growth factor, with IC50 s of 4 and 15 µM, respectively. The ability of CCG-257081 to prevent inflammation and fibrosis, measured via pulmonary collagen content and histopathology, was tested in a murine model of bleomycin-induced lung fibrosis. Animals were given intraperitoneal bleomycin for 4 weeks and concurrently dosed with CCG-257081 (0, 10, 30, and 100 mg/kg PO), a clinical anti-fibrotic (nintedanib) or the clinical standard of care (prednisolone). Mice treated with 100 mg/kg CCG-257081 gained weight vs. vehicle-treated control mice, while those receiving nintedanib and prednisolone lost significant weight. Hydroxyproline content and histological findings in tissue of animals on 100 mg/kg CCG-257081 were not significantly different from naive tissue, indicating successful prevention. Measures of tissue fibrosis were comparable between CCG-257081 and nintedanib, but only the MRTF/SRF inhibitor decreased plasminogen activator inhibitor-1 (PAI-1), a marker linked to fibrosis, in bronchoalveolar lavage fluid. In contrast, prednisolone led to marked increases in lung fibrosis by all metrics. This study demonstrates the potential use of MRTF/SRF inhibitors to prevent bleomycin-induced lung fibrosis in a clinically relevant model of the disease.


Asunto(s)
Bleomicina , Fibrosis Pulmonar , Humanos , Animales , Ratones , Bleomicina/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Inflamación , Fibroblastos , Prednisolona
8.
Front Oncol ; 12: 766794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444937

RESUMEN

Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.

9.
J Neurophysiol ; 127(3): 607-622, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080448

RESUMEN

GNAO1 encodes Gαo, a heterotrimeric G protein α subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein, and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared with WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin) enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. Although GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is an electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.NEW & NOTEWORTHY This report reveals the electrophysiological mechanisms of a movement disorder animal model with monoallelic Gnao1 loss. This study illustrates the role of Gαo protein in regulating GABA release in mouse cerebellum. This study could also facilitate the discovery of new drugs or drug repurposing for GNAO1-associated disorders. Moreover, since GNAO1 shares pathways with other genes related to movement disorders, developing drugs for the treatment of GNAO1-associated movement disorders could further the pharmacological intervention for other monogenic movement disorders.


Asunto(s)
Trastornos del Movimiento , Células de Purkinje , Animales , Cerebelo/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ratones , Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
10.
Mol Pharmacol ; 101(1): 1-12, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732527

RESUMEN

Most B-Raf proto-oncogene (BRAF)-mutant melanoma tumors respond initially to BRAF inhibitor (BRAFi)/mitogen-activated protein kinase kinase 1 inhibitor (MEKi) therapy, although few patients have durable long-term responses to these agents. The goal of this study was to use an unbiased computational approach to identify inhibitors that reverse an experimentally derived BRAFi resistance gene expression signature. Using this approach, we found that ibrutinib effectively reverses this signature, and we demonstrate experimentally that ibrutinib resensitizes a subset of BRAFi-resistant melanoma cells to vemurafenib. Ibrutinib is used clinically as an inhibitor of the Src family kinase Bruton tyrosine kinase (BTK); however, neither BTK deletion nor treatment with acalabrutinib, another BTK inhibitor with reduced off-target activity, resensitized cells to vemurafenib. These data suggest that ibrutinib acts through a BTK-independent mechanism in vemurafenib resensitization. To better understand this mechanism, we analyzed the transcriptional profile of ibrutinib-treated BRAFi-resistant melanoma cells and found that the transcriptional profile of ibrutinib was highly similar to that of multiple Src proto-oncogene kinase inhibitors. Since ibrutinib, but not acalabrutinib, has appreciable off-target activity against multiple Src family kinases, it suggests that ibrutinib may be acting through this mechanism. Furthermore, genes that are differentially expressed in ibrutinib-treated cells are enriched in Yes1-associated transcriptional regulator (YAP1) target genes, and we showed that ibrutinib, but not acalabrutinib, reduces YAP1 activity in BRAFi-resistant melanoma cells. Taken together, these data suggest that ibrutinib, or other Src family kinase inhibitors, may be useful for treating some BRAFi/MEKi-refractory melanoma tumors. SIGNIFICANCE STATEMENT: MAPK-targeted therapies provide dramatic initial responses, but resistance develops rapidly; a subset of these tumors may be rendered sensitive again by treatment with an approved Src family kinase inhibitor-ibrutinub-potentially providing improved clinical outcomes.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/metabolismo , Piperidinas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Adenina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Vemurafenib/farmacología , Proteínas Señalizadoras YAP/antagonistas & inhibidores
12.
J Biol Chem ; 297(5): 101268, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600890

RESUMEN

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


Asunto(s)
Poliaminas Biogénicas/química , Proteínas de Peces/química , Simulación del Acoplamiento Molecular , Receptores Odorantes/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Células HEK293 , Humanos , Lampreas , Ratones , Mutagénesis Sitio-Dirigida , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
13.
Mol Pharmacol ; 100(2): 53-60, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031187

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure and carries a very poor prognosis. Understanding of PAH pathogenesis is needed to support the development of new therapeutic strategies. Transforming growth factor ß (TGF-ß) drives vascular remodeling and increases vascular resistance by regulating differentiation and proliferation of smooth muscle cells (SMCs). Also, sphingosine-1-phosphate (S1P) has been implicated in PAH, but the relation between these two signaling mechanisms is not well understood. Here, we characterize the signaling networks downstream of TGF-ß in human pulmonary arterial smooth muscle cells (HPASMCs), which involves mothers against decapentaplegic homolog (SMAD) signaling as well as Rho GTPases. Activation of Rho GTPases regulates myocardin-related transcription factor (MRTF) and serum response factor (SRF) transcription activity and results in upregulation of contractile gene expression. Our genetic and pharmacologic data show that in HPASMCs upregulation of α smooth muscle actin (αSMA) and calponin by TGF-ß is dependent on both SMAD and Rho/MRTF-A/SRF transcriptional mechanisms.The kinetics of TGF-ß-induced myosin light chain (MLC) 2 phosphorylation, a measure of RhoA activation, are slow, as is regulation of the Rho/MRTF/SRF-induced αSMA expression. These results suggest that TGF-ß1 activates Rho/phosphorylated MLC2 through an indirect mechanism, which was confirmed by sensitivity to cycloheximide treatment. As a potential mechanism for this indirect action, TGF-ß1 upregulates mRNA for sphingosine kinase (SphK1), the enzyme that produces S1P, an upstream Rho activator, as well as mRNA levels of the S1P receptor (S1PR) 3. SphK1 inhibitor and S1PR3 inhibitors (PF543 and TY52156/VPC23019) reduce TGF-ß1-induced αSMA upregulation. Overall, we propose a model in which TGF-ß1 activates Rho/MRTF-A/SRF by potentiating an autocrine/paracrine S1P signaling mechanism through SphK1 and S1PR3. SIGNIFICANCE STATEMENT: In human pulmonary arterial smooth muscle cells, transforming growth factor ß depends on sphingosine-1-phosphate signaling to bridge the interaction between mothers against decapentaplegic homolog and Rho/myocardin-related transcription factor (MRTF) signaling in regulating α smooth muscle actin (αSMA) expression. The Rho/MRTF pathway is a signaling node in the αSMA regulatory network and is a potential therapeutic target for the treatment of pulmonary arterial hypertension.


Asunto(s)
Lisofosfolípidos/metabolismo , Arteria Pulmonar/citología , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Factor de Crecimiento Transformador beta1/farmacología , Actinas/genética , Proteínas de Unión al Calcio/genética , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Microfilamentos/genética , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Factor de Respuesta Sérica/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Esfingosina/metabolismo , Calponinas
14.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921974

RESUMEN

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.

15.
Front Immunol ; 12: 582166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833750

RESUMEN

The COVID-19 pandemic caused by the coronavirus SARS-COV-2 has cost many lives worldwide. In dealing with affected patients, the physician is faced with a very unusual pattern of organ damage that is not easily explained on the basis of prior knowledge of viral-induced pathogenesis. It is established that the main receptor for viral entry into tissues is the protein angiotensin-converting enzyme-2 ["ACE-2", (1)]. In a recent publication (2), a theory of autoimmunity against ACE-2, and/or against the ACE-2/SARS-COV-2 spike protein complex or degradation products thereof, was proposed as a possible explanation for the unusual pattern of organ damage seen in COVID-19. In the light of more recent information, this manuscript expands on the earlier proposed theory and offers additional, testable hypotheses that could explain both the pattern and timeline of organ dysfunction most often observed in COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Autoinmunidad , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Humanos
16.
Mol Cell Endocrinol ; 521: 111098, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278490

RESUMEN

Mice carrying an RGS-insensitive Gαi2 mutation display growth retardation early after birth. Although the growth hormone (GH)-axis is a key endocrine modulator of postnatal growth, its functional state in these mice has not been characterized. The present study was undertaken to address this issue. Results revealed that pituitary mRNA levels for GH, prolactin (PRL), somatostatin (SST), GH-releasing-hormone receptor (GHRH-R) and GH secretagogue receptor (GHS-R) were decreased in mutants compared to controls. These changes were reflected by a significant decrease in plasma levels of GH, IGF-1 and IGF-binding protein-3 (IGFBP-3). Mutants were also less responsive to GHRH and ghrelin (GhL) on GH stimulation of release from pituitary primary cell cultures. In contrast, they were more sensitive to the inhibitory effect of SST. These data provide the first evidence for an alteration of the functional state of the GH-axis in Gαi2G184S mice that likely contributes to their growth retardation.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Proteínas RGS/metabolismo , Transducción de Señal/genética , Animales , Células Cultivadas , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Ghrelina/farmacología , Hormona del Crecimiento/sangre , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/sangre , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/farmacología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Prolactina/genética , Prolactina/metabolismo , Proteínas RGS/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Ghrelina/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Transducción de Señal/efectos de los fármacos , Somatostatina/genética , Somatostatina/metabolismo , Somatostatina/farmacología
17.
J Biol Chem ; 295(34): 12153-12166, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636305

RESUMEN

Pheromones play critical roles in habitat identification and reproductive behavior synchronization in the sea lamprey (Petromyzon marinus). The bile acid 3-keto petromyzonol sulfate (3kPZS) is a major component of the sex pheromone mixture from male sea lamprey that induces specific olfactory and behavioral responses in conspecific individuals. Olfactory receptors interact directly with pheromones, which is the first step in their detection, but identifying the cognate receptors of specific pheromones is often challenging. Here, we deorphanized two highly related odorant receptors (ORs), OR320a and OR320b, of P. marinus that respond to 3kPZS. In a heterologous expression system coupled to a cAMP-responsive CRE-luciferase, OR320a and OR320b specifically responded to C24 5α-bile acids, and both receptors were activated by the same set of 3kPZS analogs. OR320a displayed larger responses to all 3kPZS analogs than did OR320b. This difference appeared to be largely determined by a single amino acid residue, Cys-792.56, the C-terminal sixth residue relative to the most conserved residue in the second transmembrane domain (2.56) of OR320a. This region of TM2 residues 2.56-2.60 apparently is critical for the detection of steroid compounds by odorant receptors in lamprey, zebrafish, and humans. Finally, we identified OR320 orthologs in Japanese lamprey (Lethenteron camtschaticum), suggesting that the OR320 family may be widely present in lamprey species and that OR320 may be under purifying selection. Our results provide a system to examine the origin of olfactory steroid detection in vertebrates and to define a highly conserved molecular mechanism for steroid-ligand detection by G protein-coupled receptors.


Asunto(s)
Ácidos Cólicos , Proteínas de Peces , Lampreas , Feromonas , Receptores Odorantes , Animales , Ácidos Cólicos/química , Ácidos Cólicos/farmacología , Proteínas de Peces/biosíntesis , Proteínas de Peces/química , Proteínas de Peces/genética , Lampreas/genética , Lampreas/metabolismo , Feromonas/química , Feromonas/farmacología , Receptores Odorantes/biosíntesis , Receptores Odorantes/química , Receptores Odorantes/genética
18.
J Pharmacol Exp Ther ; 373(1): 24-33, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31907305

RESUMEN

Neurodevelopmental disorder with involuntary movements (Online Mendelian Inheritance in Man: 617493) is a severe, early onset neurologic condition characterized by a delay in psychomotor development, hypotonia, and hyperkinetic involuntary movements. Heterozygous de novo mutations in the GNAO1 gene cause neurodevelopmental disorder with involuntary movements. Gα o, the gene product of GNAO1, is the alpha subunit of Go, a member of the heterotrimeric Gi/o family of G proteins. Go is found abundantly throughout the brain, but the pathophysiological mechanisms linking Gα o functions to clinical manifestations of GNAO1-related disorders are still poorly understood. One of the most common mutant alleles among the GNAO1 encephalopathies is the c.626G>A or p.Arg209His (R209H) mutation. We developed heterozygous knock-in Gnao1 +/R209H mutant mice using CRISPR/Cas9 methodology to assess whether a mouse model could replicate aspects of the neurodevelopmental disorder with involuntary movements clinical pattern. Mice carrying the R209H mutation exhibited increased locomotor activity and a modest gait abnormality at 8-12 weeks. In contrast to mice carrying other mutations in Gnao1, the Gnao1 +/R209H mice did not show enhanced seizure susceptibility. Levels of protein expression in multiple brain regions were unchanged from wild-type (WT) mice, but the nucleotide exchange rate of mutant R209H Gα o was 6.2× faster than WT. The atypical neuroleptic risperidone has shown efficacy in a patient with the R209H mutation. It also alleviated the hyperlocomotion phenotype observed in our mouse model but suppressed locomotion in WT mice as well. In this study, we show that Gnao1 +/R209H mice mirror elements of the patient phenotype and respond to an approved pharmacological agent. SIGNIFICANCE STATEMENT: Children with de novo mutations in the GNAO1 gene may present with movement disorders with limited effective therapeutic options. The most common mutant variant seen in children with GNAO1-associated movement disorder is R209H. Here we show, using a novel Gnao1 +/R209H mouse, that there is a clear behavioral phenotype that is suppressed by risperidone. However, risperidone also affects wild-type mouse activity, so its effects are not selective for the GNAO1-associated movement disorder.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Variación Genética/genética , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/genética , Risperidona/uso terapéutico , Animales , Secuencia de Bases , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/uso terapéutico , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Risperidona/farmacología
19.
Mol Pharmacol ; 96(6): 826-834, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645376

RESUMEN

Regulator of G protein signaling 2 (RGS2) plays a role in reducing vascular contraction and promoting relaxation due to its GTPase accelerating protein activity toward Gαq. Previously, we identified four human loss-of-function (LOF) mutations in RGS2 (Q2L, D40Y, R44H, and R188H). This study aimed to investigate whether those RGS2 LOF mutations disrupt the ability of RGS2 to regulate vascular reactivity. Isolated mesenteric arteries (MAs) from RGS2-/- mice showed an elevated contractile response to 5 nM angiotensin II and a loss of acetylcholine (ACh)-mediated vasodilation. Reintroduction of a wild-type (WT) RGS2-GFP plasmid into RGS2-/- MAs suppressed the vasoconstrictor response to angiotensin II. RGS2 LOF mutants failed to suppress the angiotensin II constriction response compared with RGS2 WT. In contrast, ACh-mediated vasoconstriction was restored by expression of RGS2 WT, D40Y, and R44H but not by RGS2 Q2L or R188H. Phosphorylation of RGS2 D40Y and R44H by protein kinase G (PKG) may explain their maintained function to support relaxation in MAs. This is supported by phosphomimetic mutants and suppression of vasorelaxation mediated by RGS2 D40Y by a PKG inhibitor. These results demonstrate that RGS2 attenuates vasoconstriction in MAs and that RGS2 LOF mutations cannot carry out this effect. Among them, the Q2L and R188H mutants supported less relaxation to ACh, whereas relaxation mediated by the D40Y and R44H mutant proteins was equal to that with WT protein. Phosphorylation of RGS2 by PKG appears to contribute to this vasorelaxation. These results provide insights for precision medicine targeting the rare individuals carrying these RGS2 mutations. SIGNIFICANCE STATEMENT: Regulator of G protein signaling 2 (RGS2) has been implicated in the control of blood pressure; rare mutations in the RGS2 gene have been identified in large-scale human gene sequencing studies. Four human mutations in RGS2 that cause loss of function (LOF) in cell-based assays were examined in isolated mouse arteries for effects on both vasoconstriction and vasodilation. All mutants showed the expected LOF effects in suppressing vasoconstriction. Surprisingly, the D40Y and R44H mutant RGS2 showed normal control of vasodilation. We propose that this is due to rescue of the mislocalization phenotype of these two mutants by nitric oxide-mediated/protein kinase G-dependent phosphorylation. These mechanisms may guide drug discovery or drug repurposing efforts for hypertension by enhancing RGS2 function.


Asunto(s)
Mutación con Pérdida de Función/fisiología , Proteínas RGS/genética , Proteínas RGS/metabolismo , Vasoconstricción/fisiología , Vasoconstrictores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Mutación con Pérdida de Función/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Secundaria de Proteína , Proteínas RGS/química , Vasoconstricción/efectos de los fármacos
20.
Mol Pharmacol ; 96(6): 683-691, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31543506

RESUMEN

Regulators of G-protein signaling (RGS) proteins modulate receptor signaling by binding to activated G-protein α-subunits, accelerating GTP hydrolysis. Selective inhibition of RGS proteins increases G-protein activity and may provide unique tissue specificity. Thiadiazolidinones (TDZDs) are covalent inhibitors that act on cysteine residues to inhibit RGS4, RGS8, and RGS19. There is a correlation between protein flexibility and potency of inhibition by the TDZD 4-[(4- fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione (CCG-50014). In the context of a single conserved cysteine residue on the α 4 helix, RGS19 is the most flexible and most potently inhibited by CCG-50014, followed by RGS4 and RGS8. In this work, we identify residues responsible for differences in both flexibility and potency of inhibition among RGS isoforms. RGS19 lacks a charged residue on the α 4 helix that is present in RGS4 and RGS8. Introducing a negative charge at this position (L118D) increased the thermal stability of RGS19 and decreased the potency of inhibition of CCG-50014 by 8-fold. Mutations eliminating salt bridge formation in RGS8 and RGS4 decreased thermal stability in RGS8 and increased potency of inhibition of both RGS4 and RGS8 by 4- and 2-fold, respectively. Molecular dynamics simulations with an added salt bridge in RGS19 (L118D) showed reduced RGS19 flexibility. Hydrogen-deuterium exchange studies showed striking differences in flexibility in the α 4 helix of RGS4, 8, and 19 with salt bridge-modifying mutations. These results show that the α 4 salt bridge-forming residue controls flexibility in several RGS isoforms and supports a causal relationship between RGS flexibility and the potency of TDZD inhibitors. SIGNIFICANCE STATEMENT: Inhibitor potency is often viewed in relation to the static structure of a target protein binding pocket. Using both experimental and computation studies we assess determinants of dynamics and inhibitor potency for three different RGS proteins. A single salt bridge-forming residue determines differences in flexibility between RGS isoforms; mutations either increase or decrease protein motion with correlated alterations in inhibitor potency. This strongly suggests a causal relationship between RGS protein flexibility and covalent inhibitor potency.


Asunto(s)
Proteínas RGS/antagonistas & inhibidores , Proteínas RGS/química , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Proteínas RGS/genética , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...