Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(4): 791-805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378804

RESUMEN

Variation in the size and number of axial segments underlies much of the diversity in animal body plans. Here we investigate the evolutionary, genetic and developmental mechanisms driving tail-length differences between forest and prairie ecotypes of deer mice (Peromyscus maniculatus). We first show that long-tailed forest mice perform better in an arboreal locomotion assay, consistent with tails being important for balance during climbing. We then identify six genomic regions that contribute to differences in tail length, three of which associate with caudal vertebra length and the other three with vertebra number. For all six loci, the forest allele increases tail length, indicative of the cumulative effect of natural selection. Two of the genomic regions associated with variation in vertebra number contain Hox gene clusters. Of those, we find an allele-specific decrease in Hoxd13 expression in the embryonic tail bud of long-tailed forest mice, consistent with its role in axial elongation. Additionally, we find that forest embryos have more presomitic mesoderm than prairie embryos and that this correlates with an increase in the number of neuromesodermal progenitors, which are modulated by Hox13 paralogues. Together, these results suggest a role for Hoxd13 in the development of natural variation in adaptive morphology on a microevolutionary timescale.


Asunto(s)
Proteínas de Homeodominio , Peromyscus , Factores de Transcripción , Animales , Bosques , Peromyscus/genética , Selección Genética , Factores de Transcripción/genética , Proteínas de Homeodominio/genética , Cola (estructura animal)
2.
Proc Natl Acad Sci U S A ; 111(3): 1037-42, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395776

RESUMEN

Mutualistic interactions benefit both partners, promoting coexistence and genetic diversity. Spatial structure can promote cooperation, but spatial expansions may also make it hard for mutualistic partners to stay together, because genetic drift at the expansion front creates regions of low genetic and species diversity. To explore the antagonism between mutualism and genetic drift, we grew cross-feeding strains of the budding yeast Saccharomyces cerevisiae on agar surfaces as a model for mutualists undergoing spatial expansions. By supplying varying amounts of the exchanged nutrients, we tuned strength and symmetry of the mutualistic interaction. Strong mutualism suppresses genetic demixing during spatial expansions and thereby maintains diversity, but weak or asymmetric mutualism is overwhelmed by genetic drift even when mutualism is still beneficial, slowing growth and reducing diversity. Theoretical modeling using experimentally measured parameters predicts the size of demixed regions and how strong mutualism must be to survive a spatial expansion.


Asunto(s)
Flujo Genético , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Simbiosis , Agar/química , Aminoácidos/metabolismo , Medios de Cultivo/metabolismo , Ecosistema , Evolución Molecular , Variación Genética , Microscopía Fluorescente , Modelos Teóricos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...