Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339930

RESUMEN

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

2.
Dis Model Mech ; 16(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36967676

RESUMEN

The laboratory mouse has served for decades as an informative animal model system for investigating the genetic and genomic basis of cancer in humans. Although thousands of mouse models have been generated, compiling and aggregating relevant data and knowledge about these models is hampered by a general lack of compliance, in the published literature, with nomenclature and annotation standards for genes, alleles, mouse strains and cancer types. The Mouse Models of Human Cancer database (MMHCdb) is an expertly curated, comprehensive knowledgebase of diverse types of mouse models of human cancer, including inbred mouse strains, genetically engineered mouse models, patient-derived xenografts, and mouse genetic diversity panels such as the Collaborative Cross. The MMHCdb is a FAIR-compliant knowledgebase that enforces nomenclature and annotation standards, and supports the completeness and accuracy of searches for mouse models of human cancer and associated data. The resource facilitates the analysis of the impact of genetic background on the incidence and presentation of different tumor types, and aids in the assessment of different mouse strains as models of human cancer biology and treatment response.


Asunto(s)
Genómica , Neoplasias , Humanos , Ratones , Animales , Modelos Animales de Enfermedad , Neoplasias/genética , Alelos , Bases de Datos Genéticas
3.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36069866

RESUMEN

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Modelos Animales de Enfermedad
4.
NAR Cancer ; 4(2): zcac014, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35475145

RESUMEN

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

5.
BMC Genomics ; 23(1): 156, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193494

RESUMEN

BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal ( https://dataportal.europdx.eu/ ), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users' interests.


Asunto(s)
Neoplasias , Animales , Xenoinjertos , Humanos , Difusión de la Información , Ratones , Neoplasias/genética , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nucleic Acids Res ; 47(D1): D1073-D1079, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30535239

RESUMEN

Patient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients' tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions. The Jackson Laboratory and EMBL-EBI are addressing these challenges by co-developing PDX Finder, a comprehensive open global catalog of PDX models and their associated datasets. Within PDX Finder, model attributes are harmonized and integrated using a previously developed community minimal information standard to support consistent searching across the originating resources. Links to repositories are provided from the PDX Finder search results to facilitate model acquisition and/or collaboration. The PDX Finder resource currently contains information for 1985 PDX models of diverse cancers including those from large resources such as the Patient-Derived Models Repository, PDXNet and EurOPDX. Individuals or organizations that generate and distribute PDXs are invited to increase the 'findability' of their models by participating in the PDX Finder initiative at www.pdxfinder.org.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Neoplasias/genética , Neoplasias/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Almacenamiento y Recuperación de la Información/métodos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Internet , Metadatos/estadística & datos numéricos , Ratones
7.
Cancer Res ; 77(21): e62-e66, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092942

RESUMEN

Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models minimal information standard (PDX-MI) for reporting on the generation, quality assurance, and use of PDX models. PDX-MI defines the minimal information for describing the clinical attributes of a patient's tumor, the processes of implantation and passaging of tumors in a host mouse strain, quality assurance methods, and the use of PDX models in cancer research. Adherence to PDX-MI standards will facilitate accurate search results for oncology models and their associated data across distributed repository databases and promote reproducibility in research studies using these models. Cancer Res; 77(21); e62-66. ©2017 AACR.


Asunto(s)
Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto/estadística & datos numéricos , Animales , Bases de Datos como Asunto , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pacientes
8.
Cancer Res ; 77(21): e67-e70, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092943

RESUMEN

Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/genética , Animales , Modelos Animales de Enfermedad , Humanos , Internet , Ratones , Neoplasias/patología
9.
Exp Mol Pathol ; 99(3): 533-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26302176

RESUMEN

Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models.


Asunto(s)
Leucemia/patología , Linfoma/patología , Neoplasias Experimentales/patología , Animales , Bases de Datos Factuales , Modelos Animales de Enfermedad , Humanos , Ratones
10.
Genesis ; 53(8): 547-60, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26097192

RESUMEN

InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user-friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features. The web interface includes a useful identifier look-up system, and both simple and sophisticated search options. Interactive results tables enable exploration, and data can be filtered, summarized, and browsed. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other entities. InterMine databases have been developed for the major model organisms, budding yeast, nematode worm, fruit fly, zebrafish, mouse, and rat together with a newly developed human database. Here, we describe how this has facilitated interoperation and development of cross-organism analysis tools and reports. InterMine as a data exploration and analysis tool is also described. All the InterMine-based systems described in this article are resources freely available to the scientific community.


Asunto(s)
Bases de Datos Factuales , Programas Informáticos , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica , Humanos , Internet , Integración de Sistemas , Interfaz Usuario-Computador
11.
Nucleic Acids Res ; 43(Database issue): D818-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332399

RESUMEN

The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.


Asunto(s)
Bases de Datos Genéticas , Modelos Animales de Enfermedad , Ratones/genética , Neoplasias Experimentales/genética , Animales , Genómica , Internet , Neoplasias Experimentales/patología , Sitios de Carácter Cuantitativo
12.
Exp Dermatol ; 23(10): 761-3, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25040013

RESUMEN

In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data.


Asunto(s)
Bases de Datos Factuales , Neoplasias Cutáneas , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
13.
Sci Rep ; 3: 1802, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652793

RESUMEN

Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community.


Asunto(s)
Genoma , Modelos Genéticos , Animales , Bases de Datos Factuales , Bases de Datos Genéticas , Genómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA