Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443738

RESUMEN

Erythrocyte biogenesis needs to be tightly regulated to secure oxygen transport and control plasma viscosity. The cytokine erythropoietin (Epo) governs erythropoiesis by promoting cell proliferation, differentiation, and survival of erythroid precursor cells. Erythroid differentiation is associated with an accumulation of the cyclin-dependent kinase inhibitor p27Kip1, but the regulation and role of p27 during erythroid proliferation remain largely unknown. We observed that p27 can bind to the erythropoietin receptor (EpoR). Activation of EpoR leads to immediate Jak2-dependent p27 phosphorylation of tyrosine residue 88 (Y88). This modification is known to impair its CDK-inhibitory activity and convert the inhibitor into an activator and assembly factor of CDK4,6. To investigate the physiological role of p27-Y88 phosphorylation in erythropoiesis, we analyzed p27Y88F/Y88F knock-in mice, where tyrosine-88 was mutated to phenylalanine. We observed lower red blood cell counts, lower hematocrit levels, and a reduced capacity for colony outgrowth of CFU-Es (colony-forming unit-erythroid), indicating impaired cell proliferation of early erythroid progenitors. Compensatory mechanisms of reduced p27 and increased Epo expression protect from stronger dysregulation of erythropoiesis. These observations suggest that p27-Y88 phosphorylation by EpoR pathway activation plays an important role in the stimulation of erythroid progenitor proliferation during the early stages of erythropoiesis.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Ratones , Animales , Receptores de Eritropoyetina/metabolismo , Fosforilación , Tirosina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Transducción de Señal , Eritropoyetina/metabolismo , Proliferación Celular
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175480

RESUMEN

Five million non-melanoma skin cancers occur globally each year, and it is one of the most common malignant cancers. The dysregulation of the endocannabinoid system, particularly cannabinoid receptor 2 (CB2), is implicated in skin cancer development, progression, and metastasis. Comparing wildtype (WT) to systemic CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in one-year old mice, and subsequently used the multi-stage chemical carcinogenesis model, wherein cancer is initiated by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). We found that aging CB2-/- mice have an increased incidence of spontaneous cancerous and precancerous skin lesions compared to their WT counterparts. In the DMBA/TPA model, CB2-/- developed more and larger papillomas, had decreased spontaneous regression of papillomas, and displayed an altered systemic immune profile, including upregulated CD4+ T cells and dendritic cells, compared to WT mice. Immune cell infiltration in the tumor microenvironment was generally low for both genotypes, although a trend of higher myeloid-derived suppressor cells was observed in the CB2-/- mice. CB2 expression in carcinogen-exposed skin was significantly higher compared to naïve skin in WT mice, suggesting a role of CB2 on keratinocytes. Taken together, our data show that endogenous CB2 activation plays an anti-tumorigenic role in non-melanoma skin carcinogenesis, potentially via an immune-mediated response involving the alteration of T cells and myeloid cells coupled with the modulation of keratinocyte activity.


Asunto(s)
Papiloma , Neoplasias Cutáneas , Animales , Ratones , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinogénesis/genética , Carcinogénesis/patología , Carcinógenos/toxicidad , Papiloma/patología , Receptores de Cannabinoides , Piel/patología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol/toxicidad , Microambiente Tumoral
3.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233351

RESUMEN

Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV) in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice, a model more commonly used to target preosteoclasts. There was a significant reduction in both the increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity. Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the effect of EPO on bone mass.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Animales , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Femenino , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Transducción de Señal
4.
Front Oncol ; 12: 976961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052260

RESUMEN

Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.

6.
Bone Res ; 9(1): 42, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518518

RESUMEN

High erythropoietin (Epo) levels are detrimental to bone health in adult organisms. Adult mice receiving high doses of Epo lose bone mass due to suppressed bone formation and increased bone resorption. In humans, high serum Epo levels are linked to fractures in elderly men. Our earlier studies indicated that Epo modulates osteoblast activity; however, direct evidence that Epo acts via its receptor (EpoR) on osteoblasts in vivo is still missing. Here, we created mice lacking EpoR in osteoprogenitor cells to specifically address this gap. Deletion of EpoR in osteoprogenitors (EpoR:Osx-cre, cKO) starting at 5 weeks of age did not alter red blood cell parameters but increased vertebral bone volume by 25% in 12-week-old female mice. This was associated with low bone turnover. Histological (osteoblast number, bone formation rate) and serum (P1NP, osteocalcin) bone formation parameters were all reduced, as were the number of osteoclasts and TRAP serum level. Differentiation of osteoblast precursors isolated from cKO versus control mice resulted in lower expression of osteoblast marker genes including Runx2, Alp, and Col1a1 on day 21, whereas the mineralization capacity was similar. Moreover, the RANKL/OPG ratio, which determines the osteoclast-supporting potential of osteoblasts, was substantially decreased by 50%. Similarly, coculturing cKO osteoblasts with control or cKO osteoclast precursors produced significantly fewer osteoclasts than coculture with control osteoblasts. Finally, exposing female mice to Epo pumps (10 U·d-1) for 4 weeks resulted in trabecular bone loss (-25%) and increased osteoclast numbers (1.7-fold) in control mice only, not in cKO mice. Our data show that EpoR in osteoprogenitors is essential in regulating osteoblast function and osteoblast-mediated osteoclastogenesis via the RANKL/OPG axis. Thus, osteogenic Epo/EpoR signaling controls bone mass maintenance and contributes to Epo-induced bone loss.

7.
Front Cell Dev Biol ; 9: 674710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113621

RESUMEN

In vitro osteoclastogenesis is a central assay in bone biology to study the effect of genetic and pharmacologic cues on the differentiation of bone resorbing osteoclasts. To date, identification of TRAP+ multinucleated cells and measurements of osteoclast number and surface rely on a manual tracing requiring specially trained lab personnel. This task is tedious, time-consuming, and prone to operator bias. Here, we propose to replace this laborious manual task with a completely automatic process using algorithms developed for computer vision. To this end, we manually annotated full cultures by contouring each cell, and trained a machine learning algorithm to detect and classify cells into preosteoclast (TRAP+ cells with 1-2 nuclei), osteoclast type I (cells with more than 3 nuclei and less than 15 nuclei), and osteoclast type II (cells with more than 15 nuclei). The training usually requires thousands of annotated samples and we developed an approach to minimize this requirement. Our novel strategy was to train the algorithm by working at "patch-level" instead of on the full culture, thus amplifying by >20-fold the number of patches to train on. To assess the accuracy of our algorithm, we asked whether our model measures osteoclast number and area at least as well as any two trained human annotators. The results indicated that for osteoclast type I cells, our new model achieves a Pearson correlation (r) of 0.916 to 0.951 with human annotators in the estimation of osteoclast number, and 0.773 to 0.879 for estimating the osteoclast area. Because the correlation between 3 different trained annotators ranged between 0.948 and 0.958 for the cell count and between 0.915 and 0.936 for the area, we can conclude that our trained model is in good agreement with trained lab personnel, with a correlation that is similar to inter-annotator correlation. Automation of osteoclast culture quantification is a useful labor-saving and unbiased technique, and we suggest that a similar machine-learning approach may prove beneficial for other morphometrical analyses.

8.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008482

RESUMEN

The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin-CD11b-Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Eritropoyetina/metabolismo , Oligopéptidos/farmacología , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hematopoyesis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
9.
Acta Haematol ; 144(3): 252-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32662775

RESUMEN

BACKGROUND: Erythroid stimulating agents (ESAs) have pleiotropic effects, and in animal and human studies those exposed to high erythropoietin had lower blood glucose. OBJECTIVE: To determine the association between ESA and glucose in anemia-treated patients with myelodysplastic syndromes (MDS) or multiple myeloma (MM). PATIENTS AND METHODS: Patients' glucose levels were compared while on to while off ESA, and all served as their own controls. To test the association between ESA and blood glucose, we employed a linear mixed model, accounting for variability in the number of measurements for each patient. RESULTS: Charts of 20 patients were reviewed. Mean age was 77 ± 9.8 years (range 50-91). Thirteen patients had MDS, and 8 had MM (1 with both). Glucose (mean ± standard error of the mean) was 116.38 ± 5.21 mg/dL without ESA, as opposed to 105.64 ± 5.11 mg/dL with ESA (p < 0.0001). The 3 diabetic and 5 steroid-treated patients also demonstrated reduced glucose by approximately 19 mg/dL with ESA (p = 0.003 and p = 0.0001, respectively). There was no difference in collective hemoglobin levels between the 2 groups. CONCLUSION: ESA treatment for anemia is associated with lower blood glucose in hematologic patients. In those who also have diabetes mellitus, ESA might contribute to glucose control, and even to hypoglycemia. Glucose monitoring is thus advised. Further studies with both diabetic and nondiabetic patients are needed to clarify this association and underlying mechanisms.


Asunto(s)
Anemia/tratamiento farmacológico , Glucemia/análisis , Darbepoetina alfa/uso terapéutico , Epoetina alfa/uso terapéutico , Anciano , Anciano de 80 o más Años , Anemia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/complicaciones , Mieloma Múltiple/patología , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/patología
10.
Front Immunol ; 11: 561294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193330

RESUMEN

Immunotherapy with anti-CD20-specific antibodies (rituximab), has become the standard of care for B cell lymphoproliferative disorders and many autoimmune diseases. In rheumatological patients the effect of rituximab on bone mass yielded conflicting results, while in lymphoma patients it has not yet been described. Here, we used cross-sectional X-ray imaging (CT/PET-CT) to serially assess bone density in patients with follicular lymphoma receiving rituximab maintenance therapy. Remarkably, this treatment prevented the decline in bone mass observed in the control group of patients who did not receive active maintenance therapy. In accordance with these data, anti-CD20-mediated B cell depletion in normal C57BL/6J female mice led to a significant increase in bone mass, as reflected by a 7.7% increase in bone mineral density (whole femur), and a ~5% increase in cortical as well as trabecular tissue mineral density. Administration of anti-CD20 antibodies resulted in a significant decrease in osteoclastogenic signals, including RANKL, which correlated with a reduction in osteoclastogenic potential of bone marrow cells derived from B-cell-depleted animals. Taken together, our data suggest that in addition to its anti-tumor activity, anti-CD20 treatment has a favorable effect on bone mass. Our murine studies indicate that B cell depletion has a direct effect on bone remodeling.


Asunto(s)
Antígenos CD20/inmunología , Antineoplásicos Inmunológicos/administración & dosificación , Linfocitos B/inmunología , Densidad Ósea/efectos de los fármacos , Resorción Ósea/terapia , Inmunoterapia/métodos , Depleción Linfocítica , Linfoma Folicular/terapia , Rituximab/administración & dosificación , Adulto , Anciano , Animales , Estudios Transversales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Resultado del Tratamiento
11.
Theranostics ; 10(19): 8744-8756, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754275

RESUMEN

Erythropoietin (EPO) is a key regulator of erythropoiesis. However, EPO receptors (EPO-Rs) are also expressed on non-erythroid cell types, including myeloid and bone cells. Immune cells also participate in bone homeostasis. B cells produce receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG), two pivotal regulators of bone metabolism. Here we explored the ability of B cells to transdifferentiate into functional osteoclasts and examined the role of EPO in this process in a murine model. Methods: We have combined specifically-designed experimental mouse models and in vitro based osteoclastogenesis assays, as well as PCR analysis of gene expression. Results: (i) EPO treatment in vivo increased RANKL expression in bone marrow (BM) B cells, suggesting a paracrine effect on osteoclastogenesis; (ii) B cell-derived osteoclastogenesis occured in vivo and in vitro, as demonstrated by B cell lineage tracing in murine models; (iii) B-cell-derived osteoclastogenesis in vitro was restricted to Pro-B cells expressing CD115/CSF1-R and is enhanced by EPO; (iv) EPO treatment increased the number of B-cell-derived preosteoclasts (ß3+CD115+), suggesting a physiological rationale for B cell derived osteoclastogenesis; (v) finally, mice with conditional EPO-R knockdown in the B cell lineage (cKD) displayed a higher cortical and trabecular bone mass. Moreover, cKD displayed attenuated EPO-driven trabecular bone loss, an effect that was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling and suggests their involvement in the regulation of bone homeostasis and possibly in EPO-stimulated erythropoietic response. Importantly, we present here for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo.


Asunto(s)
Linfocitos B/citología , Remodelación Ósea/efectos de los fármacos , Eritropoyetina/farmacología , Receptores de Eritropoyetina/genética , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Femenino , Técnicas de Inactivación de Genes , Ratones , Osteogénesis , Ligando RANK/metabolismo , Receptores de Eritropoyetina/metabolismo
12.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471308

RESUMEN

Recent studies have demonstrated that erythropoietin (EPO) treatment in mice results in trabecular bone loss. Here, we investigated the dose-response relationship between EPO, hemoglobin (Hgb) and bone loss and examined the reversibility of EPO-induced damage. Increasing doses of EPO over two weeks led to a dose-dependent increase in Hgb in young female mice, accompanied by a disproportionate decrease in trabecular bone mass measured by micro-CT (µCT). Namely, increasing EPO from 24 to 540 IU/week produced a modest 12% rise in Hgb (20.2 ± 1.3 mg/dL vs 22.7 ± 1.3 mg/dL), while trabecular bone volume fraction (BV/TV) in the distal femur decreased dramatically (27 ± 8.5% vs 53 ± 10.2% bone loss). To explore the long-term skeletal effects of EPO, we treated mice for two weeks (540 IU/week) and monitored bone mass changes after treatment cessation. Six weeks post-treatment, there was only a partial recovery of the trabecular microarchitecture in the femur and vertebra. EPO-induced bone loss is therefore dose-dependent and mostly irreversible at doses that offer only a minor advantage in the treatment of anemia. Because patients requiring EPO therapy are often prone to osteoporosis, our data advocate for using the lowest effective EPO dose for the shortest period of time to decrease thromboembolic complications and minimize the adverse skeletal outcome.


Asunto(s)
Resorción Ósea/etiología , Eritropoyetina/efectos adversos , Animales , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/patología , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/efectos de los fármacos , Células Cultivadas , Eritropoyetina/administración & dosificación , Eritropoyetina/farmacología , Femenino , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Hemoglobinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/efectos de los fármacos
13.
Pediatr Nephrol ; 33(11): 2123-2129, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30030607

RESUMEN

BACKGROUND: Decreased production of erythropoietin (EPO) is a major cause of anemia associated with chronic kidney disease (CKD). Treatment with recombinant human EPO (rHuEPO) improves patients' quality of life and survival; however, there is a marked variability in response to rHuEPO. At present, no available laboratory test is capable of evaluating responsiveness to EPO treatment. The aim of the present study was to use an in vitro bioassay to estimate the effect of uremic environment on EPO-dependent erythroid cell proliferation. METHODS: EPO-dependent human erythroleukemia cells (UT-7) were incubated with exogenous EPO (2 u/ml) and sera obtained from 60 pediatric patients (aged 1-23 years). Three groups were studied: (1) 12 children on dialysis (4 peritoneal, 8 hemodialysis); (2) 28 patients with CKD 1-5 (not on dialysis), and (3) 20 healthy children. RESULTS: Sera from dialysis patients inhibited UT-7 cell growth compared to the CKD group and healthy controls at 48 h (p = 0.003 and p = 0.04, respectively) and 72 h of culture (p = 0.02 and p = 0.07, respectively). In 18 patients treated with rHuEPO, a significant inverse correlation was found between the EPO resistance index and cell proliferation at 48 h (p = 0.007, r = - 0.63) and 72 h (p = 0.03, r = - 0.52). CONCLUSIONS: Our findings support the presence of erythropoiesis inhibitory substances in uremic sera. EPO/EPO-R-dependent mechanisms may play a role in inhibiting erythropoiesis. The in vitro bioassay described herein may serve as an indicator of rHuEPO responsiveness which may encourage further investigation of underlying mechanisms of EPO resistance.


Asunto(s)
Anemia/tratamiento farmacológico , Bioensayo , Eritropoyetina/farmacología , Insuficiencia Renal Crónica/sangre , Uremia/sangre , Adolescente , Adulto , Anemia/sangre , Anemia/etiología , Línea Celular Tumoral , Niño , Preescolar , Resistencia a Medicamentos , Eritropoyesis/efectos de los fármacos , Eritropoyetina/uso terapéutico , Femenino , Humanos , Lactante , Masculino , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Diálisis Renal , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Resultado del Tratamiento , Uremia/etiología , Uremia/terapia , Adulto Joven
14.
Sci Rep ; 7(1): 10379, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871174

RESUMEN

Erythropoietin (EPO) is the main hormone driving mammalian erythropoiesis, with activity mediated via the surface receptor, EPO-R, on erythroid progenitor cells. Recombinant human EPO is currently used clinically for the treatment of anemia in patients with end-stage renal disease, and in certain cancer patients suffering from anemia induced either by the tumor itself or by chemotherapy. EPO-R expression is also detected in non-erythroid cells, including macrophages present in the peritoneum, spleen, and bone marrow (BM). Here we demonstrate that Kupffer cells (KCs) - the liver-resident macrophages - are EPO targets. We show that, in vitro, EPO initiated intracellular signalling and enhanced phagocytosis in a rat KC line (RKC-2) and in sorted KCs. Moreover, continuous EPO administration in mice, resulted in an increased number of KCs, up-regulation of liver EPO-R expression and elevated production of the monocyte chemoattractant CCL2, with corresponding egress of Ly6Chi monocytes from the BM. In a model of acute acetaminophen-induced liver injury, EPO administration increased the recruitment of Ly6Chi monocytes and neutrophils to the liver. Taken together, our results reveal a new role for EPO in stimulating KC proliferation and phagocytosis, and in recruiting Ly6Chi monocytes in response to liver injury.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Eritropoyetina/genética , Macrófagos del Hígado/citología , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes/administración & dosificación , Animales , Antígenos Ly/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Eritropoyetina/administración & dosificación , Eritropoyetina/farmacología , Humanos , Macrófagos del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Fagocitosis , Ratas , Proteínas Recombinantes/farmacología , Transducción de Señal , Regulación hacia Arriba
15.
Vitam Horm ; 105: 161-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28629516

RESUMEN

Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart, and retina. The skeletal system is also affected by Epo; however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct vs indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of function of Epo, namely, opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions deriving from the published in vitro studies may thus relate to the different experimental conditions. Taken together, the current state-of-the-art indicates definite Epo effects on bone cells and points to the complexity of the mode of function.


Asunto(s)
Huesos/metabolismo , Eritropoyetina/metabolismo , Animales , Eritropoyetina/genética , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo
16.
Cytokine ; 89: 155-159, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822707

RESUMEN

Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.


Asunto(s)
Regeneración Ósea/fisiología , Remodelación Ósea/fisiología , Huesos/metabolismo , Eritropoyetina/metabolismo , Animales , Humanos
17.
Leuk Res ; 52: 20-27, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27870945

RESUMEN

The immune system is impaired in myelodysplastic syndromes (MDS) and plays a role in the pathogenesis of the disease. Here we show effects of recombinant human erythropoietin (rHuEPO) on T cell (CD4+, CD8+ and CD4+CD25+) number and function in MDS patients. Healthy (20 subjects), MDS patients without rHuEPO treatment ('MDS', 13), and MDS patients treated with rHuEPO ('MDS+EPO', 17) were examined. CD4+ and CD8+ T cell numbers were reduced and increased respectively in MDS compared to healthy subjects. EPO treatment normalized these levels. CD4+CD25+ cell numbers, lower in MDS, were normalized in MDS+EPO. In vitro activation of CD4+ and CD8+ cells with phytohemagglutinin as measured by CD69 expression, demonstrated a 7.2 fold increase in CD4+ activation vs 13.6 fold for MDS and MDS+EPO respectively (p=0.004); and 10.2 fold (MDS) vs 18.6 fold (MDS+EPO, p<0.003) for CD8+ T cells. Expression of the co-stimulatory marker CD28, decreased in CD4+ and CD8+ T cells in MDS, was normalized in MDS+EPO CD4+ T cells. Subgroup analysis of milder disease (WHO RA and RARS) and more advanced disease revealed no difference in CD4+ and CD8+ T cell numbers. However, the activation of these cells in the RA/RARS subgroup was impaired in EPO-untreated and enhanced in EPO-treated MDS patients. Our data suggest that EPO treatment improves immune abnormalities in MDS and may depend on disease severity.


Asunto(s)
Eritropoyetina/administración & dosificación , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/inmunología , Linfocitos T/patología , Anciano , Anciano de 80 o más Años , Antígenos CD28/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Células Cultivadas , Eritropoyetina/inmunología , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Linfocitos T/inmunología
18.
Sci Rep ; 6: 30998, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27481313

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy, characterized by osteolytic lesions and monoclonal immunoglobulins. The anemia, accompanying the disease is often treated with recombinant human EPO. Diverse non-erythropoietic effects of EPO have led us to question its combined action on the immune system and bone in the 5T33MM mouse model. EPO administration to MM mice attenuated disease progression as demonstrated by a decrease in serum MM IgG2b, splenic CD138 expressing cells, IL-6 and RORγτ transcripts in bone marrow (BM). IFN-γ transcript levels and macrophages (F4/80(+)CD11b(+)) in the BM both increased ~1.5 fold in the EPO-treated MM mice. In-vitro, EPO stimulated phagocytosis of 5T33MM cells (+30%) by BM-derived macrophages. In contrast, high-resolution microCT analysis of distal femurs revealed EPO-associated bone loss in both healthy and 5T33MM mice. EPO significantly increased expression of the osteoclastogenic nuclear factor-kappa B ligand (RANKL) in healthy mice, but not in MM mice, likely due to antagonizing effects on MM progression. Thus, in MM, EPO may act as a double-edged-sword stimulating immune response, while accelerating bone resorption, possibly via direct action on BM macrophages. This study supports a prudent approach of treating anemia in MM patients, aiming to maintain EPO-associated anti-MM effects, while considering bone damage.


Asunto(s)
Anemia/tratamiento farmacológico , Médula Ósea/inmunología , Resorción Ósea/etiología , Eritropoyetina/farmacología , Macrófagos/inmunología , Mieloma Múltiple/complicaciones , Anemia/etiología , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Células Cultivadas , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/inmunología , Fagocitosis/fisiología , Transducción de Señal/efectos de los fármacos
19.
J Bone Miner Res ; 31(10): 1877-1887, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27082941

RESUMEN

The main oxygen sensor hypoxia inducible factor (HIF) prolyl hydroxylase 2 (PHD2) is a critical regulator of tissue homeostasis during erythropoiesis, hematopoietic stem cell maintenance, and wound healing. Recent studies point toward a role for the PHD2-erythropoietin (EPO) axis in the modulation of bone remodeling, even though the studies produced conflicting results. Here, we used a number of mouse strains deficient of PHD2 in different cell types to address the role of PHD2 and its downstream targets HIF-1α and HIF-2α in bone remodeling. Mice deficient for PHD2 in several cell lineages, including EPO-producing cells, osteoblasts, and hematopoietic cells (CD68:cre-PHD2f/f ) displayed a severe reduction of bone density at the distal femur as well as the vertebral body due to impaired bone formation but not bone resorption. Importantly, using osteoblast-specific (Osx:cre-PHD2f/f ) and osteoclast-specific PHD2 knock-out mice (Vav:cre- PHD2f/f ), we show that this effect is independent of the loss of PHD2 in osteoblast and osteoclasts. Using different in vivo and in vitro approaches, we show here that this bone phenotype, including the suppression of bone formation, is directly linked to the stabilization of the α-subunit of HIF-2, and possibly to the subsequent moderate induction of serum EPO, which directly influenced the differentiation and mineralization of osteoblast progenitors resulting in lower bone density. Taken together, our data identify the PHD2:HIF-2α:EPO axis as a so far unknown regulator of osteohematology by controlling bone homeostasis. Further, these data suggest that patients treated with PHD inhibitors or EPO should be monitored with respect to their bone status. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea/metabolismo , Eritropoyetina/biosíntesis , Células Madre Hematopoyéticas/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animales , Densidad Ósea/genética , Médula Ósea/metabolismo , Médula Ósea/patología , Resorción Ósea/genética , Resorción Ósea/patología , Eritropoyetina/genética , Células Madre Hematopoyéticas/patología , Ratones , Ratones Noqueados , Osteoblastos/patología , Osteoclastos/patología
20.
FASEB J ; 29(5): 1890-900, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630969

RESUMEN

Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effect of EPO on osteoblasts. However, EPO had a direct effect on preosteoclasts by stimulating osteoclastogenesis in isolated cultures (+60%) via the Jak2 and PI3K pathways. In summary, our findings demonstrate that EPO negatively regulates bone mass and thus bears significant clinical implications for the potential management of patients with endogenously or therapeutically elevated EPO levels.


Asunto(s)
Resorción Ósea/etiología , Eritropoyetina/fisiología , Osteoclastos/citología , Receptores de Eritropoyetina/metabolismo , Animales , Apoptosis , Western Blotting , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/metabolismo , Osteogénesis/fisiología , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Eritropoyetina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...