Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7973): 358-365, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468624

RESUMEN

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.


Asunto(s)
Agricultura , Civilización , Pradera , Animales , Humanos , Agricultura/economía , Agricultura/historia , Asia , Civilización/historia , Domesticación , Europa (Continente) , Agricultores/historia , Historia Antigua , Caballos , Conducta Sedentaria/historia , Invenciones/economía , Invenciones/historia
2.
PLoS Pathog ; 19(7): e1011404, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463152

RESUMEN

Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.


Asunto(s)
Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Peste/epidemiología , ADN Bacteriano/genética , Genoma Bacteriano , Europa (Continente)/epidemiología , Filogenia
3.
Nat Ecol Evol ; 7(2): 290-303, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646948

RESUMEN

The Neolithic and Bronze Ages were highly transformative periods for the genetic history of Europe but for the Aegean-a region fundamental to Europe's prehistory-the biological dimensions of cultural transitions have been elucidated only to a limited extent so far. We have analysed newly generated genome-wide data from 102 ancient individuals from Crete, the Greek mainland and the Aegean Islands, spanning from the Neolithic to the Iron Age. We found that the early farmers from Crete shared the same ancestry as other contemporaneous Neolithic Aegeans. In contrast, the end of the Neolithic period and the following Early Bronze Age were marked by 'eastern' gene flow, which was predominantly of Anatolian origin in Crete. Confirming previous findings for additional Central/Eastern European ancestry in the Greek mainland by the Middle Bronze Age, we additionally show that such genetic signatures appeared in Crete gradually from the seventeenth to twelfth centuries BC, a period when the influence of the mainland over the island intensified. Biological and cultural connectedness within the Aegean is also supported by the finding of consanguineous endogamy practiced at high frequencies, unprecedented in the global ancient DNA record. Our results highlight the potential of archaeogenomic approaches in the Aegean for unravelling the interplay of genetic admixture, marital and other cultural practices.


Asunto(s)
ADN Antiguo , Migración Humana , Humanos , Migración Humana/historia , Europa (Continente) , Grecia , Genoma
4.
Curr Biol ; 32(16): 3641-3649.e8, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35882233

RESUMEN

During the late 3rd millennium BCE, the Eastern Mediterranean and Near East witnessed societal changes in many regions, which are usually explained with a combination of social and climatic factors.1-4 However, recent archaeogenetic research forces us to rethink models regarding the role of infectious diseases in past societal trajectories.5 The plague bacterium Yersinia pestis, which was involved in some of the most destructive historical pandemics,5-8 circulated across Eurasia at least from the onset of the 3rd millennium BCE,9-13 but the challenging preservation of ancient DNA in warmer climates has restricted the identification of Y. pestis from this period to temperate climatic regions. As such, evidence from culturally prominent regions such as the Eastern Mediterranean is currently lacking. Here, we present genetic evidence for the presence of Y. pestis and Salmonella enterica, the causative agent of typhoid/enteric fever, from this period of transformation in Crete, detected at the cave site Hagios Charalambos. We reconstructed one Y. pestis genome that forms part of a now-extinct lineage of Y. pestis strains from the Late Neolithic and Bronze Age that were likely not yet adapted for transmission via fleas. Furthermore, we reconstructed two ancient S. enterica genomes from the Para C lineage, which cluster with contemporary strains that were likely not yet fully host adapted to humans. The occurrence of these two virulent pathogens at the end of the Early Minoan period in Crete emphasizes the necessity to re-introduce infectious diseases as an additional factor possibly contributing to the transformation of early complex societies in the Aegean and beyond.


Asunto(s)
Salmonella enterica , Yersinia pestis , Genoma Bacteriano , Grecia , Humanos , Filogenia , Salmonella enterica/genética , Yersinia pestis/genética
5.
Proc Natl Acad Sci U S A ; 119(17): e2116722119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412864

RESUMEN

The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague's formative years in terms of its early evolution and ecology.


Asunto(s)
Genoma Bacteriano , Peste , Yersinia pestis , Crianza de Animales Domésticos/historia , Animales , ADN Antiguo , Variación Genética , Historia Antigua , Migración Humana/historia , Humanos , Filogenia , Peste/epidemiología , Peste/historia , Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación
6.
Science ; 374(6564): 182-188, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618559

RESUMEN

Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.


Asunto(s)
Enfermedades Transmisibles Emergentes/historia , Evolución Molecular , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Hepatitis B/historia , Américas , Asia , Pueblo Asiatico , Enfermedades Transmisibles Emergentes/virología , Europa (Continente) , Variación Genética , Genómica , Hepatitis B/virología , Historia Antigua , Humanos , Paleontología , Filogenia , Población Blanca , Indio Americano o Nativo de Alaska
7.
BMC Biol ; 19(1): 220, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610848

RESUMEN

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Asunto(s)
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Lepra/genética , Mycobacterium leprae/genética , Dinámica Poblacional
8.
Sci Adv ; 7(35)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34433570

RESUMEN

Europe's prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of "steppe" ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.

9.
Sci Rep ; 11(1): 15005, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294811

RESUMEN

Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.


Asunto(s)
Alelos , Cromosomas Humanos Y , Genética de Población , Haplotipos , ADN Mitocondrial , Marcadores Genéticos , Pruebas Genéticas , Genética de Población/métodos , Humanos , Polimorfismo de Nucleótido Simple
10.
PLoS One ; 16(6): e0241883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34191795

RESUMEN

The Middle and Late Bronze Age, a period roughly spanning the 2nd millennium BC (ca. 2000-1200 BC) in the Near East, is frequently referred to as the first 'international age', characterized by intense and far-reaching contacts between different entities from the eastern Mediterranean to the Near East and beyond. In a large-scale tandem study of stable isotopes and ancient DNA of individuals excavated at Tell Atchana (Alalakh, located in Hatay, Turkey), we explored the role of mobility at the capital of a regional kingdom, named Mukish during the Late Bronze Age, which spanned the Amuq Valley and some areas beyond. We generated strontium and oxygen isotope data from dental enamel for 53 individuals and 77 individuals, respectively, and added ancient DNA data of 10 newly sequenced individuals to a dataset of 27 individuals published in 2020. Additionally, we improved the DNA coverage of one individual from this 2020 dataset. The DNA data revealed a very homogeneous gene pool. This picture of an overwhelmingly local ancestry was consistent with the evidence of local upbringing in most of the individuals indicated by the isotopic data, where only five were found to be non-local. High levels of contact, trade, and exchange of ideas and goods in the Middle and Late Bronze Ages, therefore, seem not to have translated into high levels of individual mobility detectable at Tell Atchana.


Asunto(s)
Genómica , Migración Humana , Isótopos , Arqueología , Historia Antigua , Humanos , Turquía
12.
Cell ; 181(6): 1232-1245.e20, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32437661

RESUMEN

Modern humans have inhabited the Lake Baikal region since the Upper Paleolithic, though the precise history of its peoples over this long time span is still largely unknown. Here, we report genome-wide data from 19 Upper Paleolithic to Early Bronze Age individuals from this Siberian region. An Upper Paleolithic genome shows a direct link with the First Americans by sharing the admixed ancestry that gave rise to all non-Arctic Native Americans. We also demonstrate the formation of Early Neolithic and Bronze Age Baikal populations as the result of prolonged admixture throughout the eighth to sixth millennium BP. Moreover, we detect genetic interactions with western Eurasian steppe populations and reconstruct Yersinia pestis genomes from two Early Bronze Age individuals without western Eurasian ancestry. Overall, our study demonstrates the most deeply divergent connection between Upper Paleolithic Siberians and the First Americans and reveals human and pathogen mobility across Eurasia during the Bronze Age.


Asunto(s)
Genoma Humano/genética , Migración Humana/historia , Grupos Raciales/genética , Grupos Raciales/historia , Asia , ADN Antiguo , Europa (Continente) , Historia Antigua , Humanos , Siberia
13.
Cell ; 181(5): 1158-1175.e28, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470401

RESUMEN

Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
14.
Nat Commun ; 11(1): 1915, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313080

RESUMEN

Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region.


Asunto(s)
ADN Antiguo , Evolución Molecular , Genética de Población/historia , Genoma Humano/genética , Arqueología , ADN Mitocondrial/genética , Europa (Continente) , Francia , Alemania , Historia Antigua , Humanos , Suiza , Población Blanca/genética
15.
Nat Ecol Evol ; 4(3): 324-333, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094538

RESUMEN

It has been hypothesized that the Neolithic transition towards an agricultural and pastoralist economy facilitated the emergence of human-adapted pathogens. Here, we recovered eight Salmonella enterica subsp. enterica genomes from human skeletons of transitional foragers, pastoralists and agropastoralists in western Eurasia that were up to 6,500 yr old. Despite the high genetic diversity of S. enterica, all ancient bacterial genomes clustered in a single previously uncharacterized branch that contains S. enterica adapted to multiple mammalian species. All ancient bacterial genomes from prehistoric (agro-)pastoralists fall within a part of this branch that also includes the human-specific S. enterica Paratyphi C, illustrating the evolution of a human pathogen over a period of 5,000 yr. Bacterial genomic comparisons suggest that the earlier ancient strains were not host specific, differed in pathogenic potential and experienced convergent pseudogenization that accompanied their downstream host adaptation. These observations support the concept that the emergence of human-adapted S. enterica is linked to human cultural transformations.


Asunto(s)
Salmonella enterica , Animales , Genoma Bacteriano , Humanos
16.
Nat Commun ; 10(1): 4470, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578321

RESUMEN

The second plague pandemic, caused by Yersinia pestis, devastated Europe and the nearby regions between the 14th and 18th centuries AD. Here we analyse human remains from ten European archaeological sites spanning this period and reconstruct 34 ancient Y. pestis genomes. Our data support an initial entry of the bacterium through eastern Europe, the absence of genetic diversity during the Black Death, and low within-outbreak diversity thereafter. Analysis of post-Black Death genomes shows the diversification of a Y. pestis lineage into multiple genetically distinct clades that may have given rise to more than one disease reservoir in, or close to, Europe. In addition, we show the loss of a genomic region that includes virulence-related genes in strains associated with late stages of the pandemic. The deletion was also identified in genomes connected with the first plague pandemic (541-750 AD), suggesting a comparable evolutionary trajectory of Y. pestis during both events.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pandemias , Peste/epidemiología , Yersinia pestis/genética , Arqueología/métodos , ADN Bacteriano/química , ADN Bacteriano/clasificación , Europa Oriental/epidemiología , Fósiles , Humanos , Filogenia , Filogeografía , Peste/microbiología , Polimorfismo de Nucleótido Simple , Factores de Tiempo , Virulencia/genética , Yersinia pestis/patogenicidad
17.
Proc Natl Acad Sci U S A ; 116(25): 12363-12372, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31164419

RESUMEN

The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium's spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic.


Asunto(s)
Brotes de Enfermedades/historia , Genoma Bacteriano , Peste/microbiología , Yersinia pestis/genética , Europa (Continente)/epidemiología , Historia Medieval , Humanos , Peste/epidemiología , Peste/historia , Yersinia pestis/patogenicidad
18.
Sci Rep ; 8(1): 14075, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232341

RESUMEN

In the last decade, ancient DNA research has grown rapidly and started to overcome several of its earlier limitations through Next-Generation-Sequencing (NGS). Among other advances, NGS allows direct estimation of sample contamination from modern DNA sources. First NGS-based approaches of estimating contamination measured heterozygosity. These measurements, however, could only be performed on haploid genomic regions, i.e. the mitochondrial genome or male X chromosomes, but provided no measures of contamination in the nuclear genome of females with their two X chromosomes. Instead, female nuclear contamination is routinely extrapolated from mitochondrial contamination estimates, but it remains unclear if this extrapolation is reliable and to what degree variation in mitochondrial to nuclear DNA ratios affects this extrapolation. We therefore analyzed ancient DNA from 317 samples of different skeletal elements from multiple sites, spanning a temporal range from 7,000 BP to 386 AD. We found that the mitochondrial to nuclear DNA (mt/nc) ratio negatively correlates with an increase in endogenous DNA content and strongly influenced mitochondrial and nuclear contamination estimates in males. The ratio of mt to nc contamination estimates remained stable for overall mt/nc ratios below 200, as found particularly often in petrous bones but less in other skeletal elements and became more variable above that ratio.


Asunto(s)
Núcleo Celular/genética , ADN Antiguo/análisis , ADN Mitocondrial/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Huesos/química , Contaminación de ADN , Femenino , Haploidia , Humanos , Masculino , Análisis de Secuencia de ADN/métodos , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...