Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Environ Health Perspect ; 130(8): 87007, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35983960

RESUMEN

BACKGROUND: This paper represents, to our knowledge, the first national-level (United States) estimate of the economic impacts of vibriosis cases as exacerbated by climate change. Vibriosis is an illness contracted through food- and waterborne exposures to various Vibrio species (e.g., nonV. cholerae O1 and O139 serotypes) found in estuarine and marine environments, including within aquatic life, such as shellfish and finfish. OBJECTIVES: The objective of this study was to project climate-induced changes in vibriosis and associated economic impacts in the United States related to changes in sea surface temperatures (SSTs). METHODS: For our analysis to identify climate links to vibriosis incidence, we constructed three logistic regression models by Vibrio species, using vibriosis data sourced from the Cholera and Other Vibrio Illness Surveillance system and historical SSTs. We relied on previous estimates of the cost-per-case of vibriosis to estimate future total annual medical costs, lost income from productivity loss, and mortality-related indirect costs throughout the United States. We separately reported results for V. parahaemolyticus, V. vulnificus, V. alginolyticus, and "V. spp.," given the different associated health burden of each. RESULTS: By 2090, increases in SST are estimated to result in a 51% increase in cases annually relative to the baseline era (centered on 1995) under Representative Concentration Pathway (RCP) 4.5, and a 108% increase under RCP8.5. The cost of these illnesses is projected to reach $5.2 billion annually under RCP4.5, and $7.3 billion annually under RCP8.5, relative to $2.2 billion in the baseline (2018 U.S. dollars), equivalent to 140% and 234% increases respectively. DISCUSSION: Vibriosis incidence is likely to increase in the United States under moderate and unmitigated climate change scenarios through increases in SST, resulting in a substantial burden of morbidity and mortality, and costing billions of dollars. These costs are mostly attributable to deaths, primarily from exposure to V. vulnificus. Evidence suggests that other factors, including sea surface salinity, may contribute to further increases in vibriosis cases in some regions of the United States and should also be investigated. https://doi.org/10.1289/EHP9999a.


Asunto(s)
Cambio Climático , Vibriosis , Humanos , Incidencia , Alimentos Marinos , Temperatura , Estados Unidos/epidemiología , Vibriosis/epidemiología
4.
Clim Change ; 167(44)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34566207

RESUMEN

Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the USA. Using models that analyze vulnerability, impacts, and adaptation, this paper estimates impacts to railroad, roads, and coastal properties under three infrastructure management response scenarios: No Adaptation; Reactive Adaptation, and Proactive Adaptation. Comparing damages under each of these potential responses provides strong support for facilitating effective adaptation in these three sectors. Under a high greenhouse gas emissions scenario and without adaptation, overall costs are projected to range in the $100s of billions annually by the end of this century. The first (reactive) tier of adaptation action, however, reduces costs by a factor of 10, and the second (proactive) tier reduces total costs across all three sectors to the low $10s of billions annually. For the rail and road sectors, estimated costs for Reactive and Proactive Adaptation scenarios capture a broader share of potential impacts, including selected indirect costs to rail and road users, and so are consistently about a factor of 2 higher than prior estimates. The results highlight the importance of considering climate risks in infrastructure planning and management.

5.
Weather Clim Soc ; 13(1): 107-123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34316325

RESUMEN

Coccidioidomycosis, or valley fever, is an infectious fungal disease currently endemic to the southwestern United States. Symptoms of valley fever range in severity from flu-like illness to severe morbidity and mortality. Warming temperatures and changes in precipitation patterns may cause the area of endemicity to expand northward throughout the western United States, putting more people at risk for contracting valley fever. This may increase the health and economic burdens from this disease. We developed an approach to describe the relationship between climate conditions and valley fever incidence using historical data and generated projections of future incidence in response to both climate change and population trends using the Climate Change Impacts and Risk Analysis (CIRA) framework developed by the U.S. Environmental Protection Agency. We also developed a method to estimate economic impacts of valley fever that is based on case counts. For our 2000-15 baseline time period, we estimated annual medical costs, lost income, and economic welfare losses for valley fever in the United States were $400,000 per case, and the annual average total cost was $3.9 billion per year. For a high greenhouse gas emission scenario and accounting for population growth, we found that total annual costs for valley fever may increase up to 164% by year 2050 and up to 380% by 2090. By the end of the twenty-first century, valley fever may cost $620,000 per case and the annual average total cost may reach $18.5 billion per year. This work contributes to the broader effort to monetize climate change-attributable damages in the United States.

6.
Clim Change ; 1652021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-34321705

RESUMEN

Characterizing the future risks of climate change is a key goal of climate impacts analysis. Temperature binning provides a framework for analyzing sector-specific impacts by degree of warming as an alternative or complement to traditional scenario-based approaches in order to improve communication of results, comparability between studies, and flexibility to facilitate scenario analysis. In this study, we estimate damages for nine climate impact sectors within the contiguous United States (US) using downscaled climate projections from six global climate models, at integer degrees of US national warming. Each sector is analyzed based on socioeconomic conditions for both the beginning and the end of the century. The potential for adaptive measures to decrease damages is also demonstrated for select sectors; differences in damages across adaptation response scenarios within some sectors can be as much as an order of magnitude. Estimated national damages from these sectors based on a reactive adaptation assumption and 2010 socioeconomic conditions range from $600 million annually per degree of national warming for winter recreation to $8 billion annually per degree of national warming for labor impacts. Results are also estimated per degree of global temperature change and for 2090 socioeconomic conditions.

7.
Environ Res Lett ; 16(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33868453

RESUMEN

Wildfire activity in the western United States (US) has been increasing, a trend that has been correlated with changing patterns of temperature and precipitation associated with climate change. Health effects associated with exposure to wildfire smoke and fine particulate matter (PM2.5) include short- and long-term premature mortality, hospital admissions, emergency department visits, and other respiratory and cardiovascular incidents. We estimate PM2.5 exposure and health impacts for the entire continental US from current and future western US wildfire activity projected for a range of future climate scenarios through the 21st century. We use a simulation approach to estimate wildfire activity, area burned, fine particulate emissions, air quality concentrations, health effects, and economic valuation of health effects, using established and novel methodologies. We find that climatic factors increase wildfire pollutant emissions by an average of 0.40% per year over the 2006-2100 period under Representative Concentration Pathway (RCP) 4.5 (lower emissions scenarios) and 0.71% per year for RCP8.5. As a consequence, spatially weighted wildfire PM2.5 concentrations more than double for some climate model projections by the end of the 21st century. PM2.5 exposure changes, combined with population projections, result in a wildfire PM2.5-related premature mortality excess burden in the 2090 RCP8.5 scenario that is roughly 3.5 times larger than in the baseline period. The combined effect of increased wildfire activity, population growth, and increase in the valuation of avoided risk of premature mortality over time results in a large increase in total economic impact of wildfire-related PM2.5 mortality and morbidity in the continental US, from roughly $7 billion per year in the baseline period to roughly $36 billion per year in 2090 for RCP4.5, and $43 billion per year in RCP8.5. The climate effect alone accounts for a roughly 60% increase in wildfire PM2.5-related premature mortality in the RCP8.5 scenario, relative to baseline conditions.

8.
J Infrastruct Syst ; 27(4)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36118678

RESUMEN

High tide flooding (HTF) already affects traffic in many US coastal areas, but the issue will worsen significantly in the future. While studies show that large storm surge events threaten to be ever more costly, less damaging, but more frequent HTF events remain understudied and potentially carry a comparable economic impact. This study advances our understanding of the risks and impacts of HTF on vulnerable traffic corridors using hourly tide gauge water levels, sea-level rise projections, and link-level spatial analysis. It is the first study to estimate HTF economic impacts for varying levels of intervention, including reasonably anticipated driver-initiated rerouting and ancillary protection of adjacent property. The 2020 annual national-level costs of $1.3 to $1.5 billion will increase to $28 to $37 billion in 2050 and $220 to $260 billion in 2100 for medium to high greenhouse gas (GHG) emissions scenarios, respectively. Total costs over the century are $1.0 to $1.3 trillion (discounted 3%). Additional cost-effective protection by building sea walls or raising road surfaces could significantly reduce 2100 costs to $61 to $78 billion, but there remain many barriers to adopting least-cost adaptation decisions, and these gains may only be realized with careful planning and information sharing.

9.
Clim Risk Manag ; 29: 100233, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832376

RESUMEN

The National Coastal Property Model (NCPM) simulates flood damages resulting from sea level rise and storm surge along the contiguous U.S. coastline. The model also projects local-level investments in a set of adaptation measures under the assumption that these measures will be adopted when benefits exceed the costs over a 30-year period. However, it has been observed that individuals and communities often underinvest in adaptive measures relative to standard cost-benefit assumptions due to financial, psychological, sociopolitical, and technological factors. This study applies an updated version of the NCPM to incorporate improved cost-benefit tests and to approximate observed sub-optimal flood risk reduction behavior. The updated NCPM is tested for two multi-county sites: Virginia Beach, VA and Tampa, FL. Sub-optimal adaptation approaches slow the implementation of adaptation measures throughout the 100-year simulation and they increase the amount of flood damages, especially early in the simulation. The net effect is an increase in total present value cost of $1.1 to $1.3 billion (2015 USD), representing about a 10% increase compared to optimal adaptation approaches. Future calibrations against historical data and incorporation of non-economic factors driving adaptation decisions could prove useful in better understanding the impacts of continued sub-optimal behavior.

11.
Geohealth ; 3(5): 127-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31276080

RESUMEN

The U.S. Southwest is projected to experience increasing aridity due to climate change. We quantify the resulting impacts on ambient dust levels and public health using methods consistent with the Environmental Protection Agency's Climate Change Impacts and Risk Analysis framework. We first demonstrate that U.S. Southwest fine (PM2.5) and coarse (PM2.5-10) dust levels are strongly sensitive to variability in the 2-month Standardized Precipitation-Evapotranspiration Index across southwestern North America. We then estimate potential changes in dust levels through 2099 by applying the observed sensitivities to downscaled meteorological output projected by six climate models following an intermediate (Representative Concentration Pathway 4.5, RCP4.5) and a high (RCP8.5) greenhouse gas concentration scenario. By 2080-2099 under RCP8.5 relative to 1986-2005 in the U.S. Southwest: (1) Fine dust levels could increase by 57%, and fine dust-attributable all-cause mortality and hospitalizations could increase by 230% and 360%, respectively; (2) coarse dust levels could increase by 38%, and coarse dust-attributable cardiovascular mortality and asthma emergency department visits could increase by 210% and 88%, respectively; (3) climate-driven changes in dust concentrations can account for 34-47% of these health impacts, with the rest due to increases in population and baseline incidence rates; and (4) economic damages of the health impacts could total $47 billion per year additional to the 1986-2005 value of $13 billion per year. Compared to national-scale climate impacts projected for other U.S. sectors using the Climate Change Impacts and Risk Analysis framework, dust-related mortality ranks fourth behind extreme temperature-related mortality, labor productivity decline, and coastal property loss.

12.
Geohealth ; 3(1): 11-27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106285

RESUMEN

Pollen is an important environmental cause of allergic asthma episodes. Prior work has established a proof of concept for assessing projected climate change impacts on future oak pollen exposure and associated health impacts. This paper uses additional monitor data and epidemiologic functions to extend prior analyses, reporting new estimates of the current and projected future health burden of oak, birch, and grass pollen across the contiguous United States. Our results suggest that tree pollen in the spring currently accounts for between 25,000 and 50,000 pollen-related asthma emergency department (ED) visits annually (95% confidence interval: 14,000 to 100,000), roughly two thirds of which occur among people under age 18. Grass pollen in the summer season currently accounts for less than 10,000 cases annually (95% confidence interval: 4,000 to 16,000). Compared to a baseline with 21st century population growth but constant pollen, future temperature and precipitation show an increase in ED visits of 14% in 2090 for a higher greenhouse gas emissions scenario, but only 8% for a moderate emissions scenario, reflecting projected increases in pollen season length. Grass pollen, which is more sensitive to changes in climatic conditions, is a primary contributor to future ED visits, with the largest effects in the Northeast, Midwest, and Southern Great Plains regions. More complete assessment of the current and future health burden of pollen is limited by the availability of data on pollen types (e.g., ragweed), other health effects (e.g., other respiratory disease), and economic consequences (e.g., medication costs).

13.
Nat Commun ; 10(1): 302, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655521

RESUMEN

Notwithstanding current heavy dependence on gas-fired electricity generation in the Eastern African Power Pool (EAPP), hydropower is expected to play an essential role in improving electricity access in the region. Expansion planning of electricity infrastructure is critical to support investment and maintaining balanced consumer electricity prices. Variations in water availability due to a changing climate could leave hydro infrastructure stranded or result in underutilization of available resources. In this study, we develop a framework consisting of long-term models for electricity supply and water systems management, to assess the vulnerability of potential expansion plans to the effects of climate change. We find that the most resilient EAPP rollout strategy corresponds to a plan optimised for a slightly wetter climate compared to historical trends. This study demonstrates that failing to climate-proof infrastructure investments can result in significant electricity price fluctuations in selected countries (Uganda & Tanzania) while others, such as Egypt, are less vulnerable.

14.
Geohealth ; 1(3): 80-92, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-32158983

RESUMEN

Future climate change is expected to lengthen and intensify pollen seasons in the U.S., potentially increasing incidence of allergic asthma. We developed a proof-of-concept approach for estimating asthma emergency department (ED) visits in the U.S. associated with present-day and climate-induced changes in oak pollen. We estimated oak pollen season length for moderate (Representative Concentration Pathway (RCP) 4.5) and severe climate change scenarios (RCP8.5) through 2090 using five climate models and published relationships between temperature, precipitation, and oak pollen season length. We calculated asthma ED visit counts associated with 1994-2010 average oak pollen concentrations and simulated future oak pollen season length changes using the Environmental Benefits Mapping and Analysis Program, driven by epidemiologically derived concentration-response relationships. Oak pollen was associated with 21,200 (95% confidence interval, 10,000-35,200) asthma ED visits in the Northeast, Southeast, and Midwest U.S. in 2010, with damages valued at $10.4 million. Nearly 70% of these occurred among children age <18 years. Severe climate change could increase oak pollen season length and associated asthma ED visits by 5% and 10% on average in 2050 and 2090, with a marginal net present value through 2090 of $10.4 million (additional to the baseline value of $346.2 million). Moderate versus severe climate change could avoid >50% of the additional oak pollen-related asthma ED visits in 2090. Despite several key uncertainties and limitations, these results suggest that aeroallergens pose a substantial U.S. public health burden, that climate change could increase U.S. allergic disease incidence, and that mitigating climate change may have benefits from avoided pollen-related health impacts.

15.
Proc Natl Acad Sci U S A ; 114(2): E122-E131, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028223

RESUMEN

Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.

16.
J Air Waste Manag Assoc ; 58(5): 657-72, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18512443

RESUMEN

Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO2) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO2 emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020.


Asunto(s)
Contaminación del Aire/legislación & jurisprudencia , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/economía , Análisis Costo-Beneficio , Bases de Datos Factuales , Predicción , Estados Unidos , United States Environmental Protection Agency , Emisiones de Vehículos/análisis
17.
Health Econ ; 17(12): 1363-77, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18189227

RESUMEN

Promoting cessation is a cornerstone of tobacco control efforts by public-health agencies. Economic information to support cessation programs has generally emphasized cost-effectiveness or the impact of cigarette pricing and smoking restrictions on quit rates. In contrast, this study provides empirical estimates of smoker preferences for increased efficacy and other attributes of smoking cessation therapies (SCTs). Choice data were collected through a national survey of Canadian smokers. We find systematic preference heterogeneity for therapy types and SCT attributes between light and heavy smokers, as well as random heterogeneity using random parameters logit models. Preference heterogeneity is greatest between length of use and types of SCTs. We estimate that light smokers would be willing to pay nearly $500 ($CAN) to increase success rates to 40% with the comparable figure for heavy smokers being near $300 ($CAN). Results from this study can be used to inform research and development for smoking cessation products and programs and suggest important areas of future inquiry regarding heterogeneity of smoker preferences and preferences for other health programs.


Asunto(s)
Satisfacción del Paciente/economía , Cese del Hábito de Fumar/economía , Cese del Hábito de Fumar/psicología , Tabaquismo/tratamiento farmacológico , Adulto , Bupropión/economía , Bupropión/uso terapéutico , Inhibidores de Captación de Dopamina/economía , Inhibidores de Captación de Dopamina/uso terapéutico , Femenino , Estimulantes Ganglionares/economía , Estimulantes Ganglionares/uso terapéutico , Humanos , Funciones de Verosimilitud , Masculino , Modelos Biológicos , Nicotina/economía , Nicotina/uso terapéutico , Cese del Hábito de Fumar/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA