Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 12(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36005664

RESUMEN

The natural product indole-3-carbinol (I3C) and its major digestive product 3,3'-diindolylmethane (DIM) have shown clinical promise in multiple forms of cancer including breast cancer. In this study, we explored the calcium channel activity of DIM, its synthetic derivative 3,3'-Diindolylmethanone (DIM-one) and related I3C and DIM-one analogs. For the first time, DIM, DIM-one and analog IX were identified as selective blockers for T-type CaV3.3 (IC50s DIM 2.09 µM; DIM-one 9.07 µM) while compound IX inhibited both CaV3.2 (6.68 µM) and CaV3.3 (IC50 = 3.05 µM) using a FLIPR cell-based assay to measure inhibition of T-type calcium channel window current. Further characterization of DIM by electrophysiology revealed it inhibited inward Ca2+ current through CaV3.1 (IC50 = 8.32 µM) and CaV3.3 (IC50 = 9.63 µM), while IX partially blocked CaV3.2 and CaV3.3 inward Ca2+ current. In contrast, DIM-one preferentially blocked CaV3.1 inward Ca2+ current (IC50 = 1.53 µM). The anti-proliferative activities of these compounds revealed that oxidation of the methylene group of DIM shifted the selectivity of DIMs from breast cancer cell line MCF-7 to colon cancer cell line HT-29.

2.
J Cell Sci ; 132(15)2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31266814

RESUMEN

The primary site for KRAS signaling is the inner leaflet of the plasma membrane (PM). We previously reported that oxanthroquinone G01 (G01) inhibited KRAS PM localization and blocked KRAS signaling. In this study, we identified acylpeptide hydrolase (APEH) as a molecular target of G01. APEH formed a stable complex with biotinylated G01, and the enzymatic activity of APEH was inhibited by G01. APEH knockdown caused profound mislocalization of KRAS and reduced clustering of KRAS that remained PM localized. APEH knockdown also disrupted the PM localization of phosphatidylserine (PtdSer), a lipid critical for KRAS PM binding and clustering. The mislocalization of KRAS was fully rescued by ectopic expression of APEH in knockdown cells. APEH knockdown disrupted the endocytic recycling of epidermal growth factor receptor and transferrin receptor, suggesting that abrogation of recycling endosome function was mechanistically linked to the loss of KRAS and PtdSer from the PM. APEH knockdown abrogated RAS-RAF-MAPK signaling in cells expressing the constitutively active (oncogenic) mutant of KRAS (KRASG12V), and selectively inhibited the proliferation of KRAS-transformed pancreatic cancer cells. Taken together, these results identify APEH as a novel drug target for a potential anti-KRAS therapeutic.


Asunto(s)
Membrana Celular/enzimología , Sistema de Señalización de MAP Quinasas , Mutación Missense , Péptido Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sustitución de Aminoácidos , Línea Celular , Membrana Celular/genética , Endosomas/enzimología , Endosomas/genética , Humanos , Péptido Hidrolasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
3.
Mar Drugs ; 16(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487473

RESUMEN

T-type calcium channel (CaV3.x) blockers are receiving increasing attention as potential therapeutics for the treatment of pathophysiological disorders and diseases, including absence epilepsy, Parkinson's disease (PD), hypertension, cardiovascular diseases, cancers, and pain. However, few clinically approved CaV3.x blockers are available, and selective pharmacological tools are needed to further unravel the roles of individual CaV3.x subtypes. In this work, through an efficient synthetic route to the marine fungal product pseudellone C, we obtained bisindole alkaloid analogs of pseudellone C with a modified tryptophan moiety and identified two CaV3.2 (2, IC50 = 18.24 µM; 3, IC50 = 6.59 µM) and CaV3.3 (2, IC50 = 7.71 µM; 3, IC50 = 3.81 µM) selective blockers using a FLIPR cell-based assay measuring CaV3.x window currents. Further characterization by whole-cell patch-clamp revealed a preferential block of CaV3.1 activated current (2, IC50 = 5.60 µM; 3, IC50 = 9.91 µM), suggesting their state-dependent block is subtype specific.


Asunto(s)
Organismos Acuáticos/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Pseudallescheria/química , Alcaloides/química , Animales , Células CHO , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/síntesis química , Línea Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Concentración 50 Inhibidora , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Transducción de Señal/efectos de los fármacos , Triptófano/química
4.
J Biol Chem ; 293(35): 13696-13706, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29970615

RESUMEN

Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examine the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalizes HRAS and KRAS from the PM with similar potency and disrupts the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization of cholera toxin, indicating suppression of recycling endosome function. In searching for the mechanism of impaired endosomal recycling we observed that G01 also enhanced cellular sphingomyelin (SM) and ceramide levels and disrupted the localization of several lipid and cholesterol reporters, suggesting that the G01 molecular target may involve SM metabolism. Indeed, G01 exhibited potent synergy with other compounds that target SM metabolism in KRAS localization assays. Furthermore, G01 significantly abrogated RAS-RAF-MAPK signaling in Madin-Darby canine kidney (MDCK) cells expressing constitutively activated, oncogenic mutant RASG12V. G01 also inhibited the proliferation of RAS-less mouse embryo fibroblasts expressing oncogenic mutant KRASG12V or KRASG12D but not RAS-less mouse embryo fibroblasts expressing oncogenic mutant BRAFV600E. Consistent with these effects, G01 selectively inhibited the proliferation of KRAS-transformed pancreatic, colon, and endometrial cancer cells. Taken together, these results suggest that G01 should undergo further evaluation as a potential anti-RAS therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenantrenos/farmacología , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas ras/análisis
5.
Mar Drugs ; 15(12)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194381

RESUMEN

This study describes an investigation into secondary metabolites that are produced by a marine red alga, Symphyocladia latiuscula, which was collected from coastal waters off Qingdao, China. A combination of normal, reversed phase, and gel chromatography was used to isolate six citric acid derived natural products, aconitates A-F (1-6), together with two known and ten new polybrominated phenols, symphyocladins C/D (7a/b), and symphyocladins H-Q (8a/b, 9a/b and 10-15), respectively. Structure elucidation was achieved by detailed spectroscopic (including X-ray crystallographic) analysis. We propose a plausible and convergent biosynthetic pathway involving a key quinone methide intermediate, linking aconitates and symphyocladins.


Asunto(s)
Fenoles/química , Rhodophyta/química , Animales , Organismos Acuáticos , China , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...