Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Entomol ; 60(6): 1388-1397, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37612042

RESUMEN

House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.


Asunto(s)
Dípteros , Moscas Domésticas , Muscidae , Humanos , Bovinos , Femenino , Animales , Dípteros/microbiología , Moscas Domésticas/microbiología , Granjas , Antibacterianos/farmacología , Prevalencia , Bacterias/genética , Farmacorresistencia Microbiana
2.
Microorganisms ; 11(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36985156

RESUMEN

House flies are well recognized as filth-associated organisms and public nuisances. House flies create sanitation issues when they bridge the gap between microbe-rich breeding environments and animal/human habitations. Numerous scientific surveys have demonstrated that house flies harbor bacterial pathogens that pose a threat to humans and animals. More extensive and informative surveys incorporating next-generation sequencing technologies have shown that house fly carriage of pathogens and harmful genetic elements, such as antimicrobial resistance genes, is more widespread and dangerous than previously thought. Further, there is a strong body of research confirming that flies not only harbor but also transmit viable, and presumably infectious, bacterial pathogens. Some pathogens replicate and persist in the fly, permitting prolonged shedding and dissemination. Finally, although the drivers still have yet to be firmly determined, the potential range of dissemination of flies and their associated pathogens can be extensive. Despite this evidence, the house flies' role as reservoirs, disseminators, and true, yet facultative, vectors for pathogens have been greatly underestimated and underappreciated. In this review, we present key studies that bolster the house fly's role both an important player in microbial ecology and population biology and as transmitters of microbial threats to animal and human health.

4.
Environ Microbiome ; 18(1): 5, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658608

RESUMEN

BACKGROUND: Biting midges (Culicoides spp.) are important vectors of diverse microbes such as viruses, protozoa, and nematodes that cause diseases in wild and domestic animals. However, little is known about the role of microbial communities in midge larval habitat utilization in the wild. In this study, we characterized microbial communities (bacterial, protistan, fungal and metazoan) in soils from disturbed (bison and cattle grazed) and undisturbed (non-grazed) pond and spring potential midge larval habitats. We evaluated the influence of habitat and grazing disturbance and their interaction on microbial communities, diversity, presence of midges, and soil properties. RESULTS: Bacterial, protistan, fungal and metazoan community compositions were significantly influenced by habitat and grazing type. Irrespective of habitat and grazing type, soil communities were dominated by phyla Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria (Bacteria); Apicomplexa, Cercozoa, Ciliophora, Ochrophyta (Protists); Chytridiomycota, Cryptomycota (Fungi) and Nematoda, Arthropoda (Metazoa). The relative abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, Verrucomicrobia (Bacteria); Apicomplexa, Lobosa (Protists); Ascomycota, Blastomycotina, Cryptomycota (Fungi); and Platyhelminthes (Metazoa) were significantly affected by grazing type. Of note, midge prevalence was higher in grazed sites (67-100%) than non-grazed (25%). Presence of midges in the soil was negatively correlated with bacterial, protistan, fungal and metazoan beta diversities and metazoan species richness but positively correlated with protistan and fungal species richness. Moreover, total carbon (TC), nitrogen (TN) and organic matter (OM) were negatively correlated with the presence of midges and relative abundances of unclassified Solirubrobacterales (Bacteria) and Chlamydomonadales (Protists) but positively with Proteobacteria and unclassified Burkholderiales (Bacteria). CONCLUSIONS: Habitat and grazing type shaped the soil bacterial, protistan, fungal and metazoan communities, their compositions and diversities, as well as presence of midges. Soil properties (TN, TC, OM) also influenced soil microbial communities, diversities and the presence of midges. Prevalence of midges mainly in grazed sites indicates that midges prefer to breed and shelter in a habitat with abundant hosts, probably due to greater accessibility of food (blood meals). These results provide a first glimpse into the microbial communities, soil properties and prevalence of midges in suspected midge larval habitats at a protected natural prairie site.

5.
J Med Entomol ; 60(1): 7-13, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36305732

RESUMEN

House flies, Musca domestica L., (Diptera: Muscidae) mechanically vector diverse disease-causing microorganisms while foraging for food in agricultural and urban habitats. Although flies are diverse feeders, nutrient composition of food is important for both fly longevity and reproduction, especially for anautogenous females who require protein for egg production. We investigated whether fly sex and/or mating status influenced their preference for foods with varying macronutrient composition. Presumably mated or unmated male and female flies were separated by sex and offered four food, each in 10% solution offered on cotton wicks: sugar (carbohydrate-rich), fat-free milk (protein-rich, moderate carbohydrate), egg-yolk (protein and lipid-rich), and water (no macronutrients). Foods were colored with nontoxic dyes, which were rotated between replicates. After 4h exposure, flies were dissected to determine the type of food(s) ingested. The interaction of house fly sex and food type significantly influenced food preference, where females preferred milk (protein and carbohydrate-rich food), and males preferred mainly sugar (carbohydrate-rich). Furthermore, 32.8% of females and 10.6% of males foraged on multiple foods. While interaction of sex and mating status had no effect on food preference, milk preference was significantly higher in presumably mated than unmated females. We also tested whether food color influenced fly feeding preference, and found that color was most significant when flies were offered one food type, but negligible when multiple food types were present. This study suggests that bait-based fly control strategies should consider sex-specific preferences for various food attractants if aiming to target and control both male and female house flies.


Asunto(s)
Dípteros , Moscas Domésticas , Muscidae , Femenino , Masculino , Animales , Conducta Alimentaria , Carbohidratos , Azúcares
6.
Parasit Vectors ; 15(1): 248, 2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810301

RESUMEN

BACKGROUND: Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bacterial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin of the tick midgut microbiota. METHODS: A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut microbiome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to feed ticks artificially in an attempt to manipulate the midgut microbiome. RESULTS: The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be colonized due to rapid and effective clearance of both bacterial taxa. CONCLUSIONS: The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracellular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bacterial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during blood-feeding.


Asunto(s)
Borrelia , Ixodes , Microbiota , Rickettsia , Animales , República Checa/epidemiología , Femenino , Ixodes/microbiología
7.
Med Vet Entomol ; 36(4): 435-443, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35599244

RESUMEN

Adult house flies feed and breed in a variety of microbe-rich habitats and serve as vectors for human and animal pathogens. To better understand their role in harbouring and disseminating bacteria, we characterized the composition and diversity of bacterial communities in the gut of female house flies collected from three different habitats in Kansas: agricultural (dairy farm), urban (business area dumpsters) and mixed (business located between residential and animal agriculture areas). Bacterial community composition and diversity were influenced more by the house flies' habitat than by sampling time. The most abundant taxa were also highly prevalent in the house flies collected from all three habitats, potentially representing a 'core microbiome' attributable to the fly's trophic and reproductive associations with substrates and food sources comprised of decaying matter and/or animal waste. Bacterial taxa associated with vertebrate guts/faeces and potential pathogens were highly abundant in agricultural fly microbial communities. Interestingly, taxa of potential pathogens were highly abundant in flies from the mixed and urban sites. House flies harboured diverse bacterial communities influenced by the habitat in which they reside, including potential human and animal pathogens, further bolstering their role in the dissemination of pathogens, and indicating their utility for pathogen surveillance.


Asunto(s)
Moscas Domésticas , Microbiota , Muscidae , Femenino , Humanos , Animales , Moscas Domésticas/microbiología , Bacterias , Manejo de Especímenes/veterinaria
8.
BMC Microbiol ; 21(1): 346, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911456

RESUMEN

BACKGROUND: House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. RESULTS: Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. CONCLUSIONS: House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations.


Asunto(s)
Moscas Domésticas/metabolismo , Estiércol/microbiología , Microbiota , Animales , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Carbono/análisis , Bovinos , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Moscas Domésticas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/metabolismo , Estiércol/análisis , Nitrógeno/análisis , ARN Ribosómico/genética
9.
Parasit Vectors ; 14(1): 49, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446262

RESUMEN

BACKGROUND: The lone star tick (Amblyomma americanum), an important vector of a wide range of human and animal pathogens, is very common throughout the East and Midwest of the USA. Ticks are known to carry non-pathogenic bacteria that may play a role in their vector competence for pathogens. Several previous studies using the high throughput sequencing (HTS) technologies reported the commensal bacteria in a tick midgut as abundant and diverse. In contrast, in our preliminary survey of the field collected adult lone star ticks, we found the number of culturable/viable bacteria very low. METHODS: We aimed to analyze the bacterial community of A. americanum by a parallel culture-dependent and a culture-independent approach applied to individual ticks. RESULTS: We analyzed 94 adult females collected in eastern Kansas and found that 60.8% of ticks had no culturable bacteria and the remaining ticks carried only 67.7 ± 42.8 colony-forming units (CFUs)/tick representing 26 genera. HTS of the 16S rRNA gene resulted in a total of 32 operational taxonomic units (OTUs) with the dominant endosymbiotic genera Coxiella and Rickettsia (> 95%). Remaining OTUs with very low abundance were typical soil bacterial taxa indicating their environmental origin. CONCLUSIONS: No correlation was found between the CFU abundance and the relative abundance from the culture-independent approach. This suggests that many culturable taxa detected by HTS but not by culture-dependent method were not viable or were not in their culturable state. Overall, our HTS results show that the midgut bacterial community of A. americanum is very poor without a core microbiome and the majority of bacteria are endosymbiotic.


Asunto(s)
Amblyomma/microbiología , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Recuento de Colonia Microbiana/estadística & datos numéricos , Femenino , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Int J Syst Evol Microbiol ; 70(12): 6482-6490, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33125314

RESUMEN

Strain CS-1T, a novel facultative anaerobic bacterium, was isolated from the larval gastrointestinal tract of the biting midge, Culicoides sonorensis, a vector of the epizootic haemorrhagic disease virus and the bluetongue virus. Cells were Gram-stain-positive, non-motile, non-spore-forming, pleomorphic rods. Optimal growth occurred at pH 7.5 and 37 °C. The G+C content of the genomic DNA was 38.3 mol%, estimated by using HPLC. The dominant cellular fatty acids were C14 : 0 (45.9 %) and C16 : 0 (26.6 %). The polar lipid profile comprised glycolipids, diphosphatidylglycerol, phospholipids and phosphoglycolipids. Respiratory quinones were not detected. Strain CS-1T had very low 16S rRNA gene similarity to members of the phylum Firmicutes: Macrococcus canis KM45013T (85 % similarity) and Turicibacter sanguinis MOL361T (88 % similarity). Phylogenetic analysis based on 16S rRNA, rpoB, gyrB genes, and conserved protein sequences of the whole genome revealed that strain CS-1T was related to members of the classes Bacilli and Erysipelotrichia within the phylum Firmicutes. Furthermore, average nucleotide identity and digital DNA-DNA hybridization analyses of the whole genome revealed very low sequence similarity to species of Bacilli and Erysipelotrichaceae (Macrococcus canis KM45013T and Turicibacter sp. H121). These results indicate that strain CS-1T belongs to the phylum Firmicutes and represents a new species of a novel genus, family, order and class. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, we propose the novel taxon Culicoidibacter larvae gen. nov., sp. nov. with the type strain CS-1T (=CCUG 71726T=DSM 106607T) within the hereby new proposed novel family Culicoidibacteraceae fam. nov., new order Culicoidibacaterales ord. nov. and new class Culicoidibacteria classis nov. in the phylum Firmicutes.


Asunto(s)
Ceratopogonidae/microbiología , Firmicutes/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Firmicutes/genética , Tracto Gastrointestinal/microbiología , Larva/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
Insects ; 11(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605295

RESUMEN

Adult house flies frequent microbe-rich sites such as urban dumpsters and animal facilities, and encounter and ingest bacteria during feeding and reproductive activities. Due to unique nutritional and reproductive needs, male and female flies demonstrate different interactions with microbe-rich substrates and therefore dissemination potential. We investigated culturable aerobic bacteria and coliform abundance in male and female flies (n = 107) collected from urban (restaurant dumpsters) and agricultural (dairy farm) sites. Whole-fly homogenate was aerobically cultured and enumerated on nonselective (tryptic soy agar; culturable bacteria) and selective (violet-red bile agar, VRBA; coliforms) media. Unique morphotypes from VRBA cultures of agricultural flies were identified and tested for susceptibility to 14 antimicrobials. Female flies harbored more bacteria than males and there was a sex by site interaction with sex effects on bacterial abundance at the urban site. Coliform abundance did not differ by sex, site or sex within site. Both male and female flies carried antimicrobial-resistant (AMR) bacteria: 36/38 isolates (95%) were resistant to ≥1 antimicrobial, 33/38 were multidrug-resistant (≥2), and 24/38 isolates were resistant to ≥4 antimicrobials. Our results emphasize the role of house flies in harboring bacteria including AMR strains that pose a risk to human and animal health.

12.
Artículo en Inglés | MEDLINE | ID: mdl-32457850

RESUMEN

Culture-independent metagenomic methodologies have enabled detection and identification of microorganisms in various biological systems and often revealed complex and unknown microbiomes. In many organisms, the microbiome outnumbers the host cells and greatly affects the host biology and fitness. Ticks are hematophagous ectoparasites with a wide host range. They vector a number of human and animal pathogens and also directly cause major economic losses in livestock. Although several reports on a tick midgut microbiota show a diverse bacterial community, in most cases the size of the bacterial population has not been determined. In this study, the microbiome was quantified in the midgut and ovaries of the ticks Ixodes ricinus and Rhipicephalus microplus before, during, and after blood feeding. Although the size of bacterial community in the midgut fluctuated with blood feeding, it was overall extremely low in comparison to that of other hematophagous arthropods. In addition, the tick ovarian microbiome of both tick species exceeded the midgut 16S rDNA copy numbers by several orders of magnitude. This indicates that the ratio of a tick midgut/ovary microbiome represents an exception to the general biology of other metazoans. In addition to the very low abundance, the tick midgut diversity in I. ricinus was variable and that is in contrast to that found in the tick ovary. The ovary of I. ricinus had a very low bacterial diversity and a very high and stable bacterial abundance with the dominant endosymbiont, Midichloria sp. The elucidation of this aspect of tick biology highlights a unique tissue-specific microbial-invertebrate host interaction.


Asunto(s)
Ixodes , Ixodidae , Microbiota , Rhipicephalus , Animales , Femenino , Humanos , Ovario
13.
Insects ; 10(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635391

RESUMEN

House flies are important nuisance pests in a variety of confined livestock operations. More importantly, house flies are known mechanical vectors of numerous animal and human pathogens. Bovine respiratory disease (BRD) is an economically important, complex illness of cattle associated with several bacteria and viruses. The role of flies in the ecology and transmission of bacterial pathogens associated with BRD is not understood. Using culture-dependent and culture-independent methods, we examined the prevalence of the BRD bacterial complex Mannheimia haemolytica, Pasteurella multocida and Histophilus somni in house flies collected in a commercial feedlot from a pen with cattle exhibiting apparent BRD symptoms. Using both methods, M. haemolytica was detected in 11.7% of house flies, followed by P. multocida (5.0%) and H. somni (3.3%). The presence of BRD bacterial pathogens in house flies suggests that this insect plays a role in the ecology of BRD pathogens and could pose a risk as a potential reservoir and/or a vector of BRD pathogens among individual cattle and in their environment.

14.
Microb Ecol ; 77(4): 1091, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30915517

RESUMEN

The original published version of this article had mistakes in figure legends. Correct figure legends are presented below.

15.
Microb Ecol ; 77(4): 1082-1090, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30806729

RESUMEN

The digestive tract of medicinal leeches from commercial suppliers has been investigated previously and comprises of a relatively simple bacterial community. However, the microbiome of medicinal leeches collected directly from the natural habitat has not been examined. In this study, we characterized the bacterial community in the digestive tract (anterior crop, posterior crop, and intestine) of the European medicinal leech, Hirudo verbana, collected from the Danube river using culture-independent and culture-dependent approaches. Culture-independent approach confirmed that the digestive tract of H. verbana carries a relatively simple bacterial community with species richness in the individual samples ranging from 43 to164. The dominant bacterial taxon was Mucinivorans sp. (49.7% of total reads), followed by Aeromonas sp. (18.7% of total reads). Several low abundance taxa, new for H. verbana, such as Phreatobacter, Taibaiella, Fluviicola, Aquabacterium, Burkholderia, Hydrogenophaga, Wolinella, and unidentified Chitinophagia, were also detected. The aerobic culturing approach showed Aeromonas veronii (Proteobacteria), the known leech symbiont, as the most dominant taxon followed by several Pseudomonas and Acidovorax spp. No significant differences in the bacterial community composition were detected among different parts of the digestive tract of individual leeches. However, the overall composition of the bacterial community among individual specimen varied significantly and this is possibly due to differences in leech age, feeding status, and blood source. Our results showed that the core bacterial community of H. verbana collected from the natural habitat is similar to that reported from the digestive tract of commercially supplied leeches maintained in the laboratory.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Sanguijuelas/microbiología , Animales , Bacterias/genética , Tracto Gastrointestinal/microbiología , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Ríos , Rumanía
16.
Environ Microbiol Rep ; 7(1): 123-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25139310

RESUMEN

Rhizobacteria with biocontrol ability exploit a range of mechanisms to compete successfully with other microorganisms and to ensure their growth and survival in the rhizosphere, ultimately promoting plant growth. The rhizobacterium Serratia plymuthica AS13 is able to promote oilseed rape growth and improve seedling survival in the presence of the fungal pathogen, Rhizoctonia solani AG 2-1; however, our understanding of the mechanisms underlying the antagonism of Serratia is limited. To elucidate possible mechanisms, genome-wide gene expression profiling of S. plymuthica AS13 was carried out in the presence or absence of R. solani. We used RNA sequencing methodology to obtain a comprehensive overview of Serratia gene expression in response to R. solani. The differential gene expression profiles of S. plymuthica AS13 revealed significantly increased expression of genes related to the biosynthesis of the antibiotic pyrrolnitrin (prnABCD), protease production and transporters. The results presented here provide evidence that antibiosis is a major functional mechanism underlying the antagonistic behaviour of S. plymuthica AS13.


Asunto(s)
Antibiosis , Proteínas Bacterianas/genética , Enfermedades de las Plantas/microbiología , Rhizoctonia/fisiología , Serratia/genética , Transcripción Genética , Proteínas Bacterianas/metabolismo , Brassica rapa/crecimiento & desarrollo , Brassica rapa/microbiología , Serratia/fisiología
17.
Stand Genomic Sci ; 8(3): 441-9, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-24501629

RESUMEN

Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project "Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI's Community Sequencing Program.

18.
Stand Genomic Sci ; 6(2): 165-73, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22768360

RESUMEN

A plant-associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest because it promotes plant growth and inhibits plant pathogens. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled "Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens".

19.
Stand Genomic Sci ; 6(1): 54-62, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22675598

RESUMEN

Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled "Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

20.
Stand Genomic Sci ; 7(1): 22-30, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23450001

RESUMEN

Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project entitled "Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens" within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...