Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37073556

RESUMEN

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Nat Struct Mol Biol ; 27(2): 142-149, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988523

RESUMEN

Some proteins require completion of folding before translocation across a membrane into another cellular compartment. Yet the permeability barrier of the membrane should not be compromised and mechanisms have remained mostly elusive. Here, we present the structure of Saccharomyces cerevisiae Bcs1, an AAA-ATPase of the inner mitochondrial membrane. Bcs1 facilitates the translocation of the Rieske protein, Rip1, which requires folding and incorporation of a 2Fe-2S cluster before translocation and subsequent integration into the bc1 complex. Surprisingly, Bcs1 assembles into exclusively heptameric homo-oligomers, with each protomer consisting of an amphipathic transmembrane helix, a middle domain and an ATPase domain. Together they form two aqueous vestibules, the first being accessible from the mitochondrial matrix and the second positioned in the inner membrane, with both separated by the seal-forming middle domain. On the basis of this unique architecture, we propose an airlock-like translocation mechanism for folded Rip1.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas de Complejo Poro Nuclear/química , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
3.
Nature ; 571(7764): E4, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31235950

RESUMEN

Change history: In this Letter, the bottom blot in Fig. 2g (for 'IB: Myc') was missing. This has been corrected online.

4.
Nature ; 570(7762): 538-542, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31189955

RESUMEN

Ribosome-associated quality control (RQC) provides a rescue pathway for eukaryotic cells to process faulty proteins after translational stalling of cytoplasmic ribosomes1-6. After dissociation of ribosomes, the stalled tRNA-bound peptide remains associated with the 60S subunit and extended by Rqc2 by addition of C-terminal alanyl and threonyl residues (CAT tails)7-9, whereas Vms1 catalyses cleavage and release of the peptidyl-tRNA before or after addition of CAT tails10-12. In doing so, Vms1 counteracts CAT-tailing of nuclear-encoded mitochondrial proteins that otherwise drive aggregation and compromise mitochondrial and cellular homeostasis13. Here we present structural and functional insights into the interaction of Saccharomyces cerevisiae Vms1 with 60S subunits in pre- and post-peptidyl-tRNA cleavage states. Vms1 binds to 60S subunits with its Vms1-like release factor 1 (VLRF1), zinc finger and ankyrin domains. VLRF1 overlaps with the Rqc2 A-tRNA position and interacts with the ribosomal A-site, projecting its catalytic GSQ motif towards the CCA end of the tRNA, its Y285 residue dislodging the tRNA A73 for nucleolytic cleavage. Moreover, in the pre-state, we found the ABCF-type ATPase Arb1 in the ribosomal E-site, which stabilizes the delocalized A73 of the peptidyl-tRNA and stimulates Vms1-dependent tRNA cleavage. Our structural analysis provides mechanistic insights into the interplay of the RQC factors Vms1, Rqc2 and Arb1 and their role in the protection of mitochondria from the aggregation of toxic proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Homeostasis , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/ultraestructura , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Secuencia de Aminoácidos , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Proteoma/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/química , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
5.
Sci Rep ; 9(1): 2012, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765764

RESUMEN

Maintenance of the mitochondrial proteome depends on import of newly made proteins from the cytosol. More than half of mitochondrial proteins are made as precursor proteins with N-terminal extensions called presequences and use the TIM23 complex for translocation into the matrix, the inner mitochondrial membrane and the intermembrane space (IMS). Tim50 is the central receptor of the complex that recognizes precursor proteins in the IMS. Additionally, Tim50 interacts with the IMS domain of the channel forming subunit, Tim23, an interaction that is essential for protein import across the mitochondrial inner membrane. In order to gain deeper insight into the molecular function of Tim50, we used random mutagenesis to determine residues that are important for its function. The temperature-sensitive mutants isolated were defective in import of TIM23-dependent precursor proteins. The residues mutated map to two distinct patches on the surface of Tim50. Notably, mutations in both patches impaired the interaction of Tim50 with Tim23. We propose that two regions of Tim50 play a role in its interaction with Tim23 and thereby affect the import function of the complex.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mutagénesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Temperatura
6.
Cell ; 171(4): 890-903.e18, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29107329

RESUMEN

Eukaryotic cells have evolved extensive protein quality-control mechanisms to remove faulty translation products. Here, we show that yeast cells continually produce faulty mitochondrial polypeptides that stall on the ribosome during translation but are imported into the mitochondria. The cytosolic protein Vms1, together with the E3 ligase Ltn1, protects against the mitochondrial toxicity of these proteins and maintains cell viability under respiratory conditions. In the absence of these factors, stalled polypeptides aggregate after import and sequester critical mitochondrial chaperone and translation machinery. Aggregation depends on C-terminal alanyl/threonyl sequences (CAT-tails) that are attached to stalled polypeptides on 60S ribosomes by Rqc2. Vms1 binds to 60S ribosomes at the mitochondrial surface and antagonizes Rqc2, thereby facilitating import, impeding aggregation, and directing aberrant polypeptides to intra-mitochondrial quality control. Vms1 is a key component of a rescue pathway for ribosome-stalled mitochondrial polypeptides that are inaccessible to ubiquitylation due to coupling of translation and translocation.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Citosol/metabolismo , Transporte de Electrón , Homeostasis , Saccharomyces cerevisiae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
7.
Methods Mol Biol ; 1567: 293-314, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276026

RESUMEN

Budding yeast Saccharomyces cerevisiae represents a widely used model organism for the study of mitochondrial biogenesis and architecture. Electron microscopy is an essential tool in the analysis of cellular ultrastructure and the precise localization of proteins to organellar subcompartments. We provide here detailed protocols for the analysis of yeast mitochondria by transmission electron microscopy: (1) chemical fixation and Epon embedding of yeast cells and isolated mitochondria, and (2) cryosectioning and immunolabeling of yeast cells and isolated mitochondria according to the Tokuyasu method.


Asunto(s)
Microscopía Electrónica , Mitocondrias/ultraestructura , Levaduras/ultraestructura , Crioultramicrotomía/métodos , Microscopía Electrónica/métodos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Orgánulos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Flujo de Trabajo
8.
Elife ; 62017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165323

RESUMEN

The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase; however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mutantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Mutacional de ADN , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Modelos Químicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849155

RESUMEN

Metabolic function and architecture of mitochondria are intimately linked. More than 60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open question. Here we present experimental results obtained with yeast that support a novel hypothesis on the existence of two molecular pathways that lead to the generation of lamellar and tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA. Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and the presence of the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to apply also to higher eukaryotes, since the key components are conserved in structure and function throughout evolution.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Expresión Génica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biogénesis de Organelos , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Genome Biol Evol ; 7(5): 1235-51, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25861818

RESUMEN

The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic studies, and it can explain the complete structural evolution of mitochondrial ribosomes and OXPHOS complexes, as well as many observed functions of individual proteins.


Asunto(s)
Evolución Molecular , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas/química , Genes Mitocondriales , Mutación , Neurospora crassa/genética , Fosforilación Oxidativa , Subunidades de Proteína/genética , ARN Ribosómico/química , Proteínas Ribosómicas/química , Ribosomas/ultraestructura
13.
FEBS J ; 282(11): 2178-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25765297

RESUMEN

Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Proteínas de Transporte de Membrana/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química
14.
J Mol Biol ; 427(6 Pt A): 1135-58, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25676309

RESUMEN

Mitochondria are the central hub of key cellular processes such as energy conversion, cell signaling, cell cycle regulation and cell differentiation. Therefore, in particular, mitochondrial biogenesis and protein translocation have been the focus of intense research for now nearly half a century. In spite of remarkable progress the field has made, many of the proposed mechanisms remain controversial and none of the translocation pathways is yet understood at the high-resolution level. In this context, the present article is intended to identify and discuss current major open questions and unresolved issues in the field in hope that it will stimulate and engage the pursuit of current efforts and expose new directions.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Citosol/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/metabolismo
15.
J Mol Biol ; 427(5): 1075-84, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25083920

RESUMEN

Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas/fisiología , Proteínas Fúngicas/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Dominios y Motivos de Interacción de Proteínas/fisiología , Levaduras/metabolismo
16.
Elife ; 3: e01684, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24714493

RESUMEN

Structure and function of mitochondria are intimately linked. In a search for components that participate in building the elaborate architecture of this complex organelle we have identified Aim24, an inner membrane protein. Aim24 interacts with the MICOS complex that is required for the formation of crista junctions and contact sites between inner and outer membranes. Aim24 is necessary for the integrity of the MICOS complex, for normal respiratory growth and mitochondrial ultrastructure. Modification of MICOS subunits Mic12 or Mic26 by His-tags in the absence of Aim24 leads to complete loss of cristae and respiratory complexes. In addition, the level of tafazzin, a cardiolipin transacylase, is drastically reduced and the composition of cardiolipin is modified like in mutants lacking tafazzin. In conclusion, Aim24 by interacting with the MICOS complex plays a key role in mitochondrial architecture, composition and function. DOI: http://dx.doi.org/10.7554/eLife.01684.001.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Biogénesis de Organelos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Oxidación-Reducción , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
17.
J Cell Biol ; 204(7): 1083-6, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24687277

RESUMEN

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60.


Asunto(s)
Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Subunidades de Proteína/química , Animales , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Terminología como Asunto
18.
J Cell Biol ; 199(4): 599-611, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23128244

RESUMEN

The TOB-SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of ß-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55-Sam50, Tob38-Sam35, and Tob37-Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB-SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Neurospora crassa/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica
19.
J Cell Biol ; 199(1): 125-35, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23007651

RESUMEN

Chaperones mediate protein folding and prevent deleterious protein aggregation in the cell. However, little is known about the biogenesis of chaperones themselves. In this study, we report on the biogenesis of the yeast mitochondrial Hsp70 (mtHsp70) chaperone, which is essential for the functionality of mitochondria. We show in vivo and in organello that mtHsp70 rapidly folds after its import into mitochondria, with its ATPase domain and peptide-binding domain (PBD) adopting their structures independently of each other. Importantly, folding of the ATPase domain but not of the PBD was severely affected in the absence of the Hsp70 escort protein, Hep1. We reconstituted the folding of mtHsp70, demonstrating that Hep1 and ATP/ADP were required and sufficient for its de novo folding. Our data show that Hep1 bound to a folding intermediate of mtHsp70. Binding of an adenine nucleotide triggered release of Hep1 and folding of the intermediate into native mtHsp70. Thus, Hep1 acts as a specialized chaperone mediating the de novo folding of an Hsp70 chaperone.


Asunto(s)
Proteínas HSP70 de Choque Térmico/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Biol Cell ; 23(22): 4335-46, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22993211

RESUMEN

The vast majority of mitochondrial proteins are synthesized in the cytosol and transported into the organelle in a largely, if not completely, unfolded state. The proper function of mitochondria thus depends on folding of several hundreds of proteins in the various subcompartments of the organelle. Whereas folding of proteins in the mitochondrial matrix is supported by members of several chaperone families, very little is known about folding of proteins in the intermembrane space (IMS). We targeted dihydrofolate reductase (DHFR) as a model substrate to the IMS of yeast mitochondria and analyzed its folding. DHFR can fold in this compartment, and its aggregation upon heat shock can be prevented in an ATP-dependent manner. Yme1, an AAA (ATPases associated with diverse cellular activities) protease of the IMS, prevented aggregation of DHFR. Analysis of protein aggregates in mitochondria lacking Yme1 revealed the presence of a number of proteins involved in the establishment of mitochondrial ultrastructure, lipid metabolism, protein import, and respiratory growth. These findings explain the pleiotropic effects of deletion of YME1 and suggest an important role for Yme1 as a folding assistant, in addition to its proteolytic function, in the protein homeostasis of mitochondria.


Asunto(s)
Proteasas ATP-Dependientes/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/fisiología , Tetrahidrofolato Deshidrogenasa/metabolismo , Proteasas ATP-Dependientes/genética , Animales , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...