Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078728

RESUMEN

BACKGROUND: Cervical cancer (CC) is a viral-associated tumor caused by the infection with the human papilloma virus. CC is then an immunogenic cancer that expresses viral antigens. Despite being immunogenic, CC does not fully respond to immune checkpoint inhibitors (ICI). LIF is a crucial cytokine in embryo implantation, involved in maternal tolerance that acts as an immunomodulatory factor in cancer. LIF is expressed in CC and high levels of LIF is associated with poor prognosis in CC. METHODS: We evaluated the impact of LIF on the immune response to ICI using primary plasmocytoid dendritic cells (pDCs) and macrophage cultures, syngeneic animals and patient-derived models that recapitulate the human tumor microenvironment. RESULTS: We found that the viral proteins E6 and E7 induce the expression of LIF via the NFκB pathway. The secreted LIF can then repress type I interferon expressed in pDCs, and CXCL9 expressed in tumor associated macrophages. Blockade of LIF promotes the induction of type I interferon and CXCL9 inducing the tumor infiltration of CD8 T cell. This results in the sensitization of the tumor to ICI. Importantly, we observed that patients with CC expressing high levels of LIF tent to be resistant to ICI. CONCLUSION: Our data show that the HPV virus induces the expression of LIF to provide a selective advantage to the tumor cell by generating local immunosuppression via the repression of type I interferon and CXCL9. Combinatory treatment with blocking antibodies against LIF and ICI could be effective against CC expressing high levels of LIF.

2.
Neurobiol Dis ; 181: 106113, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023829

RESUMEN

BACKGROUND: Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS: We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS: After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION: We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.


Asunto(s)
Esclerosis Múltiple , Transcriptoma , Humanos , Masculino , Femenino , Esclerosis Múltiple/genética , Caracteres Sexuales , Perfilación de la Expresión Génica , Sistema Nervioso Central , Proteínas Portadoras , Proteínas de Ciclo Celular
3.
Clin Cancer Res ; 29(4): 791-804, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36441800

RESUMEN

PURPOSE: Leukemia inhibitory factor (LIF) is a multifunctional cytokine with numerous reported roles in cancer and is thought to drive tumor development and progression. Characterization of LIF and clinical-stage LIF inhibitors would increase our understanding of LIF as a therapeutic target. EXPERIMENTAL DESIGN: We first tested the association of LIF expression with transcript signatures representing multiple processes regulating tumor development and progression. Next, we developed MSC-1, a high-affinity therapeutic antibody that potently inhibits LIF signaling and tested it in immune competent animal models of cancer. RESULTS: LIF was associated with signatures of tumor-associated macrophages (TAM) across 7,769 tumor samples spanning 22 solid tumor indications. In human tumors, LIF receptor was highly expressed within the macrophage compartment and LIF treatment drove macrophages to acquire immunosuppressive capacity. MSC-1 potently inhibited LIF signaling by binding an epitope that overlaps with the gp130 receptor binding site on LIF. MSC-1 showed monotherapy efficacy in vivo and drove TAMs to acquire antitumor and proinflammatory function in syngeneic colon cancer mouse models. Combining MSC-1 with anti-PD1 leads to strong antitumor response and a long-term tumor-free survival in a significant proportion of treated mice. CONCLUSIONS: Overall, our findings highlight LIF as a therapeutic target for cancer immunotherapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Humanos , Ratones , Terapia de Inmunosupresión , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
4.
Biol Sex Differ ; 13(1): 68, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414996

RESUMEN

BACKGROUND: In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS: To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS: The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS: Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.


Asunto(s)
Enfermedad de Parkinson , Humanos , Masculino , Femenino , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transcriptoma , Sustancia Negra/metabolismo , Inflamación/metabolismo , Factores de Transcripción/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA