Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848574

RESUMEN

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Efectos Antropogénicos , Océano Índico
2.
Glob Chang Biol ; 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33319502

RESUMEN

Rapid anthropogenic environmental change is expected to impact a host of ecological parameters in Southern Ocean ecosystems. Of critical concern are the consequences of these changes on the range of species that show fidelity to migratory destinations, as philopatry is hypothesized to help or hinder adaptation to climate change depending on the circumstances. Many baleen whales show philopatry to feeding grounds and are also capital breeders that meet migratory and reproductive costs through seasonal energy intake. Southern right whales (Eubalaena australis, SRWs) are capital breeders that have a strong relationship between reproductive output and foraging success. The population dynamics of South Africa's population of SRWs are characterized by two distinct periods: the 1990s, a period of high calving rates; and the late 2010s, a period associated with lowered calving rates. Here we use analyses of stable carbon (δ13 C) and nitrogen (δ15 N) isotope values from SRW biopsy samples (n = 122) collected during these two distinct periods to investigate foraging ecology of the South African population of SRWs over a time period coincident with the demographic shift. We show that South African SRWs underwent a dramatic northward shift, and diversification, in foraging strategy from 1990s to 2010s. Bayesian mixing model results suggest that during the 1990s, South African SRWs foraged on prey isotopically similar to South Georgia/Islas Georgias del Sur krill. In contrast, in the 2010s, South African SRWs foraged on prey isotopically consistent with the waters of the Subtropical Convergence, Polar Front and Marion Island. We hypothesize that this shift represents a response to changes in preferred habitat or prey, for example, the decrease in abundance and southward range contraction of Antarctic krill. By linking reproductive decline to changing foraging strategies for the first time in SRWs, we show that altering foraging strategies may not be sufficient to adapt to a changing ocean.

3.
J Hered ; 111(3): 263-276, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32347944

RESUMEN

As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.


Asunto(s)
Variación Genética , Ballenas/genética , Distribución Animal , Migración Animal , Animales , Brasil , Chile , Conducta Alimentaria , Femenino , Técnicas de Genotipaje , Islas , Masculino , Perú
4.
FEMS Yeast Res ; 17(5)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810704

RESUMEN

The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans.


Asunto(s)
Candida albicans/fisiología , Proteínas de Transporte de Catión/metabolismo , Cationes Monovalentes/metabolismo , Homeostasis , Potenciales de la Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Eliminación de Gen , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...