Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(11): pgad360, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024412

RESUMEN

The demystification of how 19th-century novelly designed materials became significant elements of modern technological, economic, and cultural life requires a complete understanding of the material dimensions of historical artifacts. The objects frequently described as the earliest manufactured plastic products-the billiard balls made by John Wesley Hyatt and his associates from the late 1860s-are examined closely for the first time and are found to be more complex and functionally more successful than has been described. Modern analytical techniques such as optical microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy, X-ray fluorescence, micro-Fourier transformed infrared, and handheld/micro-Raman spectroscopies were used to reveal the complex composition of the Smithsonian Institution's "original" 1868 celluloid billiard ball. Comparisons with billiard and pool balls commercialized from the 1880s to the 1960s showed an unexpected consistency in material formulations. All specimens were made of an unprecedented composite material prepared with a mixture of cellulose nitrate, camphor, and ground bone; the source of the bone was identified as cattle by peptide mass fingerprint (ZooMS). Patent specifications and contemporary journal descriptions explained how and when these formulations emerged. Combining the technical analyses of compositions with a careful reading of the historical record and contemporary descriptions reveals the key elements of the first successful efforts to substitute materials to assist the survival of endangered animals.

2.
Sci Rep ; 11(1): 20208, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642377

RESUMEN

Cellulose nitrate (CN) is an intrinsically unstable material that puts at risk the preservation of a great variety of objects in heritage collections, also posing threats to human health. For this reason, a detailed investigation of its degradation mechanisms is necessary to develop sustainable conservation strategies. To investigate novel probes of degradation, we implemented deep UV photoluminescence micro spectral-imaging, for the first time, to characterize a corpus of historical systems composed of cellulose nitrate. The analysis of cinematographic films and everyday objects dated from the nineteenth c./early twentieth c. (Perlov's collection), as well as of photo-aged CN and celluloid references allowed the identification of novel markers that correlate with different stages of CN degradation in artworks, providing insight into the role played by plasticizers, fillers, and other additives in stability. By comparison with photoaged references of CN and celluloid (70% CN and 30% camphor), it was possible to correlate camphor concentration with a higher rate of degradation of the cinematographic films. Furthermore, the present study investigates, at the sub-microscale, materials heterogeneity that correlates to the artworks' history, associating the different emission profiles of zinc oxide to specific color formulations used in the late nineteenth and early twentieth centuries.

3.
Sci Rep ; 11(1): 16074, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373492

RESUMEN

Preserving culture heritage cellulose acetate-based historical films is a challenge due to the long-term instability of these complex materials and a lack of prediction models that can guide conservation strategies for each particular film. In this work, a cellulose acetate degradation model is proposed as the basis for the selection of appropriate strategies for storage and conservation for each specimen, considering its specific information. Due to the formulation complexity and diversity of cellulose acetate-based films produced over the decades, we hereby propose a hybrid modeling approach to describe the films degradation process. The problem is addressed by a hybrid model that uses as a backbone a first-principles based model to describe the degradation kinetics of the pure cellulose diacetate polymer. The mechanistic model was successfully adapted to fit experimental data from accelerated aging of plasticized films. The hybrid model considers then the specificity of each historical film via the development of two chemometric models. These models resource on gas release data, namely acetic acid, and descriptors of the films (manufacturing date, AD-strip value and film type) to assess the current polymer degradation state and estimate the increase in the degradation rate. These estimations are then conjugated with storage conditions (e.g., temperature and relative humidity, presence of adsorbent in the film's box) and used to feed the mechanistic model to provide the required time degradation simulations. The developed chemometric models provided predictions with accuracy more than 87%. We have found that the storage archive as well as the manufacturing company are not determining factors for conservation but rather the manufacturing date, off gas data as well as the film type. In summary, this hybrid modeling was able to develop a practical tool for conservators to assess films conservation state and to design storage and conservation policies that are best suited for each cultural heritage film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA