Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 221(5): 2777-99, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26068054

RESUMEN

Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved. Morphometric analysis of primary cultures of cortical neurons from E18 Sprague-Dawley rats demonstrated that an A2AR agonist, CGS 21680, enhances axonal elongation and dendritic branching, being the former prevented by inhibitors of phosphoinositide 3-kinase, mitogen-activated protein kinase and phospholipase C, but not of protein kinase A. By testing the influence of a scavenger of BDNF (brain-derived neurotrophic factor) over the action of the A2AR agonist and the action of a selective A2AR antagonist over the action of BDNF, we could conclude that while the action of A2ARs upon dendritic branching is dependent on the presence of endogenous BDNF, the influence of A2ARs upon axonal elongation is independent of endogenous BDNF. In consonance with the action over axonal elongation, A2AR activation promoted a decrease in microtubule stability and an increase in microtubule growth speed in axonal growth cones. In conclusion, we disclose a facilitatory action of A2ARs upon axonal elongation and microtubule dynamics, providing new insights for A2ARs regulation of neuronal differentiation and axonal regeneration.


Asunto(s)
Axones/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Dendritas/fisiología , Neuronas/fisiología , Receptor de Adenosina A2A/fisiología , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Axones/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Dendritas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Fenetilaminas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo
2.
Cereb Cortex ; 24(1): 67-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22997174

RESUMEN

Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.


Asunto(s)
Adenosina Quinasa/fisiología , Adenosina/fisiología , Homeostasis/fisiología , Sinapsis/fisiología , Adenosina Quinasa/genética , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Espacio Extracelular/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Purinas/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...