Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 118: 102310, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195415

RESUMEN

Based on a four year study conducted in Cowichan Bay, Canada, potential linkages between composition and abundance of phytoplankton and the feeding and histopathology of juvenile salmon were noted. During two dense blooms (Skeletonema spp. and Pseudo-nitzschia spp.), feeding of juvenile Chinook salmon decreased (n=202, empty stomachs >50%). All collected salmon gills (n=5) were damaged following high levels of mechanically harmful Chaetoceros convolutus in the water column; all collected livers (n=5) showed signs of pathological changes during Octactis speculum bloom. These observations were consistent with effects previously reported from salmon farms, however this agreement must be treated with caution as it is based on a limited number of samples. We suggest that there is a need for comprehensive studies to evaluate the potential role of harmful algae as a stressor to wild fish in a coastal environment.


Asunto(s)
Diatomeas , Salmón , Animales , Eutrofización , Fitoplancton , Agua
2.
Sci Rep ; 10(1): 8517, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444669

RESUMEN

Fish growth and survival are largely determined by the nutritional quality of their food, and the fish that grow quickly during early life stages are more likely to reproduce. To adequately estimate the quality of the prey for fish, it is necessary to understand the trophic links at the base of the food-web. Trophic biomarkers (e.g., stable isotopes and fatty acids) are particularly useful to discriminate and quantify food-web relationships. We explored the connections between plankton food-web components, and the seasonal and spatial dynamics of the trophic biomarkers and how this determines the availability of high-quality prey for juvenile Pacific salmon and Pacific herring in the Strait of Georgia, Canada. We demonstrate that the plankton food-web in the region is largely supported by diatom and flagellate production. We also show that spatial differences in terms of energy transfer efficiency exist in the region. Further, we found that the fatty acid composition of the zooplankton varied seasonally, matching a shift from diatom dominated production in the spring to flagellate dominated production in the summer. This seasonal shift conferred a higher nutritional value to zooplankton in the summer, indicating better quality prey for juvenile salmon and herring during this period.


Asunto(s)
Biomarcadores/análisis , Monitoreo del Ambiente , Peces/fisiología , Cadena Alimentaria , Fitoplancton/fisiología , Estaciones del Año , Animales , Canadá , Isótopos de Carbono/análisis , Ácidos Grasos/análisis , Isótopos de Nitrógeno/análisis , Estado Nutricional , Análisis Espacial
3.
PLoS One ; 14(9): e0221956, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31479469

RESUMEN

Infectious diseases are potential contributors to decline in Coho salmon (Oncorhynchus kisutch) populations. Although pathogens are theoretically considered to pose higher risk in high-density rearing environments like hatcheries, there is no direct evidence that hatchery-origin Coho salmon increase the transmission of infectious agents to sympatric wild populations. This study was undertaken to compare prevalence, burden, and diversity of infectious agents between hatchery-reared and wild juvenile Coho salmon in British Columbia (BC), Canada. In total, 2,655 juvenile Coho salmon were collected between 2008 and 2018 from four regions of freshwater and saltwater in BC. High-throughput microfluidics qPCR was employed for simultaneous detection of 36 infectious agents from mixed-tissue samples (gill, brain, heart, liver, and kidney). Thirty-one agents were detected at least once, including ten with prevalence >5%. Candidatus Brachiomonas cysticola, Paraneuclospora theridion, and Parvicapsula pseudobranchiocola were the most prevalent agents. Diversity and burden of infectious agents were substantially higher in marine environment than in freshwater. In Mainland BC, infectious burden and diversity were significantly lower in hatchery smolts than in wild counterparts, whereas in other regions, there were no significant differences. Observed differences in freshwater were predominantly driven by three parasites, Loma salmonae, Myxobolus arcticus, and Parvicapsula kabatai. In saltwater, there were no consistent differences in agent prevalence between hatchery and wild fish shared among the west and east coasts of Vancouver Island. Although some agents showed differential infectious patterns between regions, annual variations likely contributed to this signal. Our findings do not support the hypothesis that hatchery smolts carry higher burdens of infectious agents than conspecific wild fish, reducing the potential risk of transfer to wild smolts at this life stage. Moreover, we provide a baseline of infectious agents in juvenile Coho salmon that will be used in future research and modeling potential correlations between infectious profiles and marine survival.


Asunto(s)
Oncorhynchus kisutch/microbiología , Oncorhynchus kisutch/parasitología , Animales , Animales Salvajes/microbiología , Animales Salvajes/parasitología , Colombia Británica/epidemiología , Burkholderiales/aislamiento & purificación , Burkholderiales/patogenicidad , Enterocytozoon/aislamiento & purificación , Enterocytozoon/patogenicidad , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , Explotaciones Pesqueras , Agua Dulce , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Microsporidiosis/epidemiología , Microsporidiosis/microbiología , Microsporidiosis/veterinaria , Myxozoa/aislamiento & purificación , Myxozoa/patogenicidad , Enfermedades Parasitarias en Animales/epidemiología , Enfermedades Parasitarias en Animales/parasitología , Prevalencia , Factores de Riesgo , Agua de Mar
4.
Fish Physiol Biochem ; 45(6): 1867-1878, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31297680

RESUMEN

Monitoring the growth of salmon during their early marine phase provides insights into prey availability, and growth rates may be linked to risks of size-dependent mortality. However, the measurement of growth rate is challenging for free-living salmon in the ocean. Insulin-like growth factor (IGF)-I is a growth-promoting hormone that is emerging as a useful index of growth in salmon. In addition, laboratory-based studies using coho salmon have shown that one of circulating IGF-binding proteins (IGFBPs), IGFBP-1b, is induced by fasting and thus could be used as an inverse index of growth and/or catabolic state in salmon. However, few studies have measured plasma levels of IGFBP-1b in salmon in the wild. We measured plasma IGFBP-1b levels for postsmolt coho salmon collected in the Strait of Georgia and surrounding waters, British Columbia, Canada, and compared regional differences in IGFBP-1b to ecological information such as seawater temperature and stomach fullness. Plasma IGFBP-1b levels were the highest in fish from Eastern Johnstone Strait and relatively high in Queen Charlotte Strait and Western Johnstone Strait, which was in good agreement with the poor ocean conditions for salmon hypothesized to occur in that region. The molar ratio of plasma IGF-I to IGFBP-1b, a theoretical parameter of IGF-I availability to the receptor, discriminated differences among regions better than IGF-I or IGFBP-1b alone. Our data suggest that plasma IGFBP-1b reflects catabolic status in postsmolt coho salmon, as highlighted in fish in Eastern Johnston Strait, and is a useful tool to monitor negative aspects of salmon growth in the ocean.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Oncorhynchus kisutch/crecimiento & desarrollo , Animales , Colombia Británica , Geografía , Factor I del Crecimiento Similar a la Insulina/análisis , Oncorhynchus kisutch/sangre , Estrés Fisiológico
5.
J Anim Ecol ; 88(1): 67-78, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790171

RESUMEN

The phenology of long-distance migrations can influence individual fitness, moderate population dynamics and regulate the availability of ecosystem services to other trophic levels. Phenology varies within and among populations, and can be influenced by conditions individuals experience both prior to departure and encounter en route. Assessing how intrinsic and extrinsic factors (e.g., individual physical condition vs. environmental conditions) interact to influence variation in migratory phenologies across ecological scales is often limited due to logistical constraints associated with tracking large numbers of individuals from multiple populations simultaneously. We used two natural tags, DNA and otolith microstructure analysis, to estimate the relative influence of individual traits (life-history strategy, body size at departure and growth during migration), population-specific behaviours and interannual variability on the phenology of marine migrations in juvenile sockeye salmon Oncorhynchus nerka. We show that the timing and duration of juvenile sockeye salmon migrations were correlated with both life-history strategy and body size, while migration duration was also correlated with departure timing and growth rates during migration. Even after accounting for the effect of individual traits, several populations exhibited distinct migration phenologies. Finally, we observed substantial interannual and residual variation, suggesting stochastic environmental conditions moderate the influence of carry-over effects that develop prior to departure, as well as population-specific strategies. Migratory phenologies are shaped by complex interactions between drivers acting at multiple ecological and temporal scales. Given evidence that intraspecific diversity can stabilize ecological systems, conservation efforts should seek to maintain migratory variation among populations and preserve locally adapted phenotypes; however, variation within populations, which may buffer systems from environmental stochasticity, should also be regularly assessed and preserved.


Asunto(s)
Migración Animal , Ecosistema , Animales , Dinámica Poblacional , Salmón , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...