Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Biomater Sci ; 12(11): 2978-2992, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38683548

RESUMEN

Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 µM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.


Asunto(s)
Lípidos , Humanos , Animales , Lípidos/química , Polímeros/química , Administración por Inhalación , Sistemas de Liberación de Medicamentos , Albúminas/química , Albúminas/metabolismo , Pulmón/metabolismo , Unión Proteica , Portadores de Fármacos/química
2.
Pharmacol Rev ; 76(2): 300-320, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351074

RESUMEN

In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.


Asunto(s)
Arilamina N-Acetiltransferasa , Enfermedades Metabólicas , Enfermedades Mitocondriales , Humanos , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Especificidad por Sustrato , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Mitocondriales/tratamiento farmacológico
3.
Expert Opin Drug Deliv ; 21(1): 151-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38248870

RESUMEN

OBJECTIVES: Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS: The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS: Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION: Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.


Asunto(s)
Polietilenglicoles , Polímeros , Ratas , Humanos , Animales , Polímeros/química , Polietilenglicoles/química , Peso Molecular , Sistemas de Liberación de Medicamentos , Pulmón/metabolismo , Lípidos/química , Albúminas/metabolismo
5.
Indian J Otolaryngol Head Neck Surg ; 75(4): 2945-2951, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37974718

RESUMEN

Moderately advanced (stage III) and advanced (stage IV a & b) OSMF requires surgical intervention for management A number of options are available for reconstruction of post OSMF oral cavity defects. In our study we retrospectively compared buccal fat pad, nasolabial flap and platysma flap for reconstruction of the buccal mucosal defects. Patient records were obtained from the medical records section of the Institute and divided into three groups; group A (buccal fat pad), group B (nasolabial group) and group C (platysma flap). Maximal mouth opening and intercommisural distance were the primary outcomes. Kruskal Wallis test was used to test the mean difference between three groups. Mann-Whitney test was used for intergroup comparisons. Wilcoxon signed rank test was used to evaluate the mean difference in outcomes at each follow up interval. A p value of < 0.05 was considered as statistically significant at 95% confidence interval. After 1 year follow up patients in platysma group had significantly better mouth opening (39.84 ± 1.65 mm) compared to both buccal fat pad (36.69 ± 3.41 mm) and nasolabial groups (37.94 ± 0.43 mm). Inter commisural distance was significantly better in patients reconstructed with platysma flap (59.21 ± 0.99 mm) compared to both buccal fat pad (54.11 ± 1 mm) and nasolabial flap (56.84 ± 1.48 mm). Platysma flap lead to significantly better maximal mouth opening compared to both nasolabial and buccal fat pad. Both buccal fat pad and nasolabial lead to comparable mouth opening. Inter commissural distance is maximum with platysma flap followed by nasolabial flap and buccal fat pad.

6.
Nutrients ; 15(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764764

RESUMEN

Since its discovery in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to be responsible for at least 769.3 million infections and over 6.95 million deaths. Despite significant global vaccination efforts, there are limited therapies that are considered safe and effective for use in the management of COVID-19 during pregnancy despite the common knowledge that pregnant patients have a much higher risk of adverse outcomes. A bioactive compound found in broccoli sprout-sulforaphane-is a potent inducer of phase-II detoxification enzymes promoting a series of potentially beneficial effects notably as an antioxidant, anti-inflammatory, and anti-viral. A pilot, double-blinded, placebo-controlled randomised trial is to be conducted in Melbourne, Australia, across both public and private hospital sectors. We will assess a commercially available broccoli sprout extract in pregnant women between 20+0 and 36+0 weeks gestation with SARS-CoV-2 infection to investigate (i) the duration of COVID-19 associated symptoms, (ii) maternal and neonatal outcomes, and (iii) biomarkers of infection and inflammation. We plan to enrol 60 outpatient women with COVID-19 irrespective of vaccination status diagnosed by PCR swab or RAT (rapid antigen test) within five days and randomised to 14 days of oral broccoli sprout extract (42 mg of sulforaphane daily) or identical microcrystalline cellulose placebo. The primary outcome of this pilot trial will be to assess the feasibility of conducting a larger trial investigating the duration (days) of COVID-19-associated symptoms using a broccoli sprout supplement for COVID-19-affected pregnancies. Pregnant patients remain an at-risk group for severe disease following infection with SARS-CoV-2 and currently unclear consequences for the offspring. Therefore, this study will assess feasibility of using a broccoli sprout supplement, whilst providing important safety data for the use of sulforaphane in pregnancy.


Asunto(s)
Brassica , COVID-19 , Humanos , Femenino , Embarazo , SARS-CoV-2 , Polvos , Mujeres Embarazadas , Método Doble Ciego , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Mol Pharm ; 20(9): 4468-4477, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37548597

RESUMEN

Dynamin II (dynII) plays a significant role in the internalization pathways of endocytic cells, by allowing membrane invaginations to "bud off". An important class of dynII inhibitors that are used clinically are phenothiazines, such as prochlorperazine (PCZ). PCZ is an antipsychotic drug but is also currently in clinical trials at higher concentrations as an adjuvant in cancer patients that increases the efficacy of monoclonal antibodies at high intravenous doses. It is unknown, however, whether high-dose dynII inhibitors have the potential to alter the pharmacokinetics of co-administered chemotherapeutic nanomedicines that are largely cleared via the mononuclear phagocyte system. This work therefore sought to investigate the impact of clinically relevant concentrations of phenothiazines, PCZ and thioridazine, on in vitro liposome endocytosis and in vivo liposome pharmacokinetics after PCZ infusion in rats. The uptake of fluorescently labeled PEGylated liposomes into differentiated and undifferentiated THP-1 and RAW246.7 cells, and primary human peripheral white blood cells, was investigated via flow cytometry after co-incubation with dynII inhibitors. The IV pharmacokinetics of PEGylated liposomes were also investigated in rats after a 20 min infusion with PCZ. Phenothiazines and dyngo4a reduced the uptake of PEGylated liposomes by THP-1 and RAW264.7 cells in a concentration-dependent manner in vitro. However, dynII inhibitors did not alter the mean uptake of liposomes by human peripheral white blood cells, but endocytic white cells from some donors exhibited sensitivity to phenothiazine exposure. When a clinically relevant dose of PCZ was co-administered with PEGylated liposomal doxorubicin (Caelyx/Doxil) in rats, the pharmacokinetics and biodistribution of liposomes were unaltered. These data suggest that while clinically relevant doses of dynII inhibitors can inhibit the uptake of liposomes by endocytic cells in vitro, they are unlikely to significantly affect the pharmacokinetics of long-circulating, co-administered liposomes.


Asunto(s)
Dinamina II , Liposomas , Ratas , Humanos , Animales , Distribución Tisular , Doxorrubicina , Polietilenglicoles , Fenotiazinas , Proclorperazina
8.
Placenta ; 141: 84-93, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37591715

RESUMEN

Excess inflammation and oxidative stress are common themes in many pathologies of pregnancy including preeclampsia and more recently severe COVID-19. The risk of preeclampsia increases following maternal infection with COVID-19, potentially relating to significant overlap in pathophysiology with endothelial, vascular and immunological dysfunction common to both. Identifying a therapy which addresses these injurious processes and stabilises the endothelial and vascular maternal system would help address the significant global burden of maternal and neonatal morbidity and mortality they cause. Sulforaphane is a naturally occurring phytonutrient found most densely within cruciferous vegetables. It has anti-inflammatory, antioxidant and immune modulating properties via upregulation of phase-II detoxification enzymes. This review will cover the common pathways shared by COVID-19 and preeclampsia and offer a potential therapeutic target via nuclear factor erythroid 2-related factor upregulation in the form of sulforaphane.


Asunto(s)
COVID-19 , Preeclampsia , Recién Nacido , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/metabolismo , COVID-19/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo
9.
Expert Opin Drug Deliv ; 20(8): 1145-1155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535434

RESUMEN

OBJECTIVES: Drug delivery systems typically show limited access to the lung interstitium and absorption after pulmonary delivery. The aim of this work was to undertake a proof-of-concept investigation into the potential of employing endogenous albumin and albumin absorption mechanisms in the lungs to improve lung interstitial access and absorption of inhaled drug delivery systems that bind albumin. METHODS: The permeability of human albumin (HSA) through monolayers of primary human alveolar epithelia, small airway epithelia, and microvascular endothelium were investigated. The pulmonary pharmacokinetics of bovine serum albumin (BSA) was also investigated in efferent caudal mediastinal lymph duct-cannulated sheep after inhaled aerosol administration. RESULTS: Membrane permeability coefficient values (Papp) of HSA increased in the order alveolar epithelia

Asunto(s)
Albúminas , Pulmón , Humanos , Animales , Ovinos , Pulmón/metabolismo , Albúminas/metabolismo , Sistemas de Liberación de Medicamentos , Aerosoles , Linfa/metabolismo
10.
Surg Technol Int ; 422023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493619

RESUMEN

Antimicrobial impregnated wound dressings are a critical tool for the management, prevention, and control of surgical site infections (SSIs) and infected chronic wounds. However, the sustained therapeutic antimicrobial activity of the dressing when employed for extended periods cannot be readily determined in vivo. Consequently, dressings are changed frequently to ensure that their antimicrobial activity is maintained. Whilst frequent dressing changes allow the wound to be assessed, this is time-consuming and can cause disruption to the wound bed impairing the healing process. Furthermore, this increases medical costs for the patient and hospitals. This paper introduces a novel concept to monitor the therapeutic levels of an antimicrobial component within a wound dressing ensuring the wound dressing remains "fit for purpose" and avoiding indiscriminate use of antiseptics. This could help to inform clinicians whether the antimicrobial is still being delivered at therapeutic levels and as such when to change the dressing ensuring timely positive clinical outcomes. Silver has been used historically as an antimicrobial agent and is ubiquitous in current generations of antimicrobial wound dressings. However, its activity is complex due to the poor solubility of silver ions in the presence of chloride and the effect of complexation by other components in the dressing and wound ecosystem, not least by serum proteins. In this paper, we detail an electrochemical silver sensor (5D patent protected - WO2023275553A1), constructed using a platinum (Pt) nanoband array electrode, and characterise its response to silver ions. This is determined in the presence of bovine serum albumin (BSA) and simulated wound fluid (SWF) containing chloride and rationalised using atomic analysis of the composition of the SWF. The sensor response in SWF is compared with the antimicrobial activity of silver against Pseudomonas aeruginosa in the planktonic and biofilm state, as a function of the amount of silver nitrate added. At low concentrations, silver in SWF has good solubility but reduced antimicrobial effect due to binding of silver by BSA as shown by the sensor response. At intermediate concentrations, above 10ppm, the silver was efficacious on both planktonic microorganisms and biofilm impregnated with microorganisms and readily detected with the sensor. At high concentrations, silver precipitates and both the silver in solution and the sensor response plateaus. The data demonstrates how the sensor correlates with the antimicrobial activity of the silver in vitro and how this could be used to actively monitor antimicrobials in vivo.

11.
Biochemistry ; 62(14): 2093-2097, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37318062

RESUMEN

There are two human arylamine N-acetyltransferases (NAT1 and NAT2) that have evolved separately and differ in their substrate specificity and tissue localization. In addition to its acetyltransferase activity, NAT1 can hydrolyze acetyl coenzyme A to coenzyme A in the presence of folate. Here, we show that NAT1 is rapidly inactivated at temperatures above 39 °C whereas NAT2 is more stable. NAT1 acetyltransferase activity is also rapidly lost in whole cells at a rate similar to that of recombinant protein, suggesting it is not protected by intracellular chaperones. By contrast, the hydrolase activity of NAT1 is resistant to heat-induced inactivation, in part because folate stabilizes the protein. Heat generated by mitochondria following the dissipation of the inner membrane potential was sufficient to inactivate NAT1 in whole cells. Within the physiological range of core body temperatures (36.5-37.5 °C), NAT1 acetyltransferase activity decreased by 30% while hydrolase activity increased by >50%. This study demonstrates the thermal regulation of NAT1, but not NAT2, and suggests that NAT1 may switch between an acetyltransferase and a hydrolase within a narrow temperature range in the presence of folate.


Asunto(s)
Arilamina N-Acetiltransferasa , Humanos , Arilamina N-Acetiltransferasa/metabolismo , Temperatura , Acetil-CoA Hidrolasa , Acetiltransferasas/metabolismo , Ácido Fólico
12.
Mol Pharm ; 20(7): 3494-3504, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37256791

RESUMEN

PEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics. This study examined how anti-PEG IgM levels affect the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) and compared the immunogenicity of a lipid nanoparticle formulation of linear DNA (DNA-LNP) to standard PEG-HSPC liposomes. DNA-LNP was prepared using the same composition and approach as Pfizer's BNT162b2, except linear double-stranded DNA was used as the genetic material. PEGylated HSPC-based liposomes were formulated using the lipid rehydration and extrusion method. Nanoparticles were dosed IM to rats at 0.005-0.5 mg lipid/kg body weight 1 week before evaluating the plasma pharmacokinetics of clinically relevant doses of PLD (1 mg/kg, IV) or PEGylated interferon α2a (Pegasys, 5 µg/kg, SC). Plasma PEG IgM was compared between pre- and 1-week post-dose blood samples. The results showed that anti-PEG IgM production increased with increasing PEG-HSPC liposome dose and that IgM significantly correlated with the plasma half-life, clearance, volume of distribution, and area under the curve of a subsequent dose of PLD. The plasma exposure of Pegasys was also significantly reduced after initial delivery of 0.005 mg/ml PEG-HSPC liposome. However, a single 0.05 mg/kg IM dose of DNA-LNP did not significantly elevate PEG IgM and did not alter the IV pharmacokinetics of PLD. These data showed that PEGylated Covid-19 vaccines are less immunogenic compared to standard PEGylated HSPC liposomes and that there is an antibody threshold for accelerating the clearance of PEGylated therapeutics.


Asunto(s)
COVID-19 , Nanopartículas , Ratas , Humanos , Animales , Liposomas , Vacuna BNT162 , Vacunas contra la COVID-19 , Inmunoglobulina M , Polietilenglicoles/farmacocinética , ADN , Fosfatidilcolinas
13.
Pediatr Surg Int ; 39(1): 171, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031267

RESUMEN

Children undergoing appendicectomy for complicated appendicitis are at an increased risk of post-operative morbidity. Placement of an intra-peritoneal drain to prevent post-operative complications is controversial. We aimed to assess the efficacy of prophylactic drain placement to prevent complications in children with complicated appendicitis. A systematic review was performed in accordance with PRISMA guidelines. Cochrane, MEDLINE and Web of Science databases were searched from inception to November 2022 for studies directly comparing drain placement to no drain placement in children ≤ 18 years of age undergoing operative treatment of complicated appendicitis. A total of 5108 children with complicated appendicitis were included from 16 studies; 2231 (44%) received a drain. Placement of a drain associated with a significantly increased risk of intra-peritoneal abscess formation (odds ratio [OR] 1.61, 95% confidence interval [CI] 1.16-2.24, p = 0.004) but there was no significant difference in wound infection rate (OR 1.46, 95% CI 0.74-2.88, p = 0.28). Length of stay was significantly longer in the drain group (mean difference 2.02 days, 95% CI 1.14-2.90, p < 0.001). Although the quality and certainty of the available evidence is low, prophylactic drain placement does not prevent intra-peritoneal abscess following appendicectomy in children with complicated appendicitis.


Asunto(s)
Absceso Abdominal , Apendicitis , Laparoscopía , Peritonitis , Humanos , Niño , Absceso/cirugía , Apendicitis/complicaciones , Apendicitis/cirugía , Tiempo de Internación , Absceso Abdominal/etiología , Absceso Abdominal/prevención & control , Absceso Abdominal/cirugía , Drenaje/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Peritonitis/cirugía , Apendicectomía/efectos adversos , Laparoscopía/efectos adversos
14.
BMC Oral Health ; 23(1): 111, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36803460

RESUMEN

BACKGROUND: Droplets and aerosols produced during dental procedures are a risk factor for microbial and viral transmission. Unlike sodium hypochlorite, hypochlorous acid (HOCl) is nontoxic to tissues but still exhibits broad microbicidal effect. HOCl solution may be applicable as a supplement to water and/or mouthwash. This study aims to evaluate the effectiveness of HOCl solution on common human oral pathogens and a SARS-CoV-2 surrogate MHV A59 virus, considering the dental practice environment. METHODS: HOCl was generated by electrolysis of 3% hydrochloric acid. The effect of HOCl on human oral pathogens, Fusobacterium nucleatum, Prevotella intermedia, Streptococcus intermedius, Parvimonas micra, and MHV A59 virus was studied from four perspectives: concentration; volume; presence of saliva; and storage. HOCl solution in different conditions was utilized in bactericidal and virucidal assays, and the minimum inhibitory volume ratio that is required to completely inhibit the pathogens was determined. RESULTS: In the absence of saliva, the minimum inhibitory volume ratio of freshly prepared HOCl solution (45-60 ppm) was 4:1 for bacterial suspensions and 6:1 for viral suspensions. The presence of saliva increased the minimum inhibitory volume ratio to 8:1 and 7:1 for bacteria and viruses, respectively. Applying a higher concentration of HOCl solution (220 or 330 ppm) did not lead to a significant decrease in the minimum inhibitory volume ratio against S. intermedius and P. micra. The minimum inhibitory volume ratio increases in applications of HOCl solution via the dental unit water line. One week of storage of HOCl solution degraded HOCl and increased the minimum growth inhibition volume ratio. CONCLUSIONS: HOCl solution (45-60 ppm) is still effective against oral pathogens and SAR-CoV-2 surrogate viruses even in the presence of saliva and after passing through the dental unit water line. This study indicates that the HOCl solution can be used as therapeutic water or mouthwash and may ultimately reduce the risk of airborne infection in dental practice.


Asunto(s)
COVID-19 , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacología , SARS-CoV-2 , Antisépticos Bucales/farmacología , Aerosoles y Gotitas Respiratorias , Bacterias
15.
J Phys Chem Lett ; 13(39): 9028-9034, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36149746

RESUMEN

Molecules based on the deprotonated p-hydroxycinnamate moiety are widespread in nature, including serving as UV filters in the leaves of plants and as the biochromophore in photoactive yellow protein. The photophysical behavior of these chromophores is centered around a rapid E → Z photoisomerization by passage through a conical intersection seam. Here, we use photoisomerization and photodissociation action spectroscopies with deprotonated 4-hydroxybenzal acetone (pCK-) to characterize a wavelength-dependent bifurcation between electron autodetachment (spontaneous ejection of an electron from the S1 state because it is situated in the detachment continuum) and E → Z photoisomerization. While autodetachment occurs across the entire S1(ππ*) band (370-480 nm), E → Z photoisomerization occurs only over a blue portion of the band (370-430 nm). No E → Z photoisomerization is observed when the ketone functional group in pCK- is replaced with an ester or carboxylic acid. The wavelength-dependent bifurcation is consistent with potential energy surface calculations showing that a barrier separates the Franck-Condon region from the E → Z isomerizing conical intersection. The barrier height, which is substantially higher in the gas phase than in solution, depends on the functional group and governs whether E → Z photoisomerization occurs more rapidly than autodetachment.


Asunto(s)
Acetona , Electrones , Ácidos Carboxílicos , Ésteres , Análisis Espectral
16.
World J Surg Oncol ; 20(1): 302, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127678

RESUMEN

BACKGROUND: India encountered two waves of COVID-19 pandemic with variability in its characteristics and severity. Concerns were raised over the safety of treatment, and higher morbidity was predicted for oncological surgery. The present study was conducted to evaluate and compare the rate of morbidity and mortality in patients undergoing curative surgery for cancer before and during the COVID-19 pandemic. METHOD: The prospectively obtained clinical data of 1576 patients treated between April 2019 and May 2021 was reviewed; of these, 959 patients were operated before COVID-19 and 617 during the pandemic. The data on complications, deaths, confirmed or suspected COVID-19 cases, and COVID-19 infection among health workers (HCW) was extracted. RESULTS: A 35% fall in number of surgeries was seen during the COVID period; significant fall was seen in genital and esophageal cancer. There was no difference in postoperative complication; however, the postoperative mortality was significantly higher. A total of 71 patients had COVID-19, of which 62 were preoperative and 9 postoperative, while 30/38 healthcare workers contracted COVID-19, of which 7 had the infection twice and 3 were infected after two doses of vaccination; there was no mortality in healthcare workers. CONCLUSION: The present study demonstrates higher mortality rates after surgery in cancer patients, with no significant change in morbidity rates. A substantial proportion of HCWs were also infected though there was no mortality among this group. The results suggest higher mortality in cancer patients despite following the guidelines and protocols.


Asunto(s)
COVID-19 , Gripe Humana , Neoplasias , COVID-19/epidemiología , Personal de Salud , Humanos , Gripe Humana/epidemiología , Neoplasias/epidemiología , Neoplasias/cirugía , Pandemias , Estudios Retrospectivos
17.
Breast Cancer Res Treat ; 195(3): 223-236, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35918499

RESUMEN

PURPOSE: Arylamine N-acetyltransferase 1 (NAT1) deficiency has been associated with drug resistance and poor outcomes in breast cancer patients. The current study aimed to investigate drug resistance in vitro using normal breast cancer cell lines and NAT1-deficient cell lines to understand the changes induced by the lack of NAT1 that resulted in poor drug response. METHODS: The response to seven chemotherapeutic agents was quantified following NAT1 deletion using CRISPR-Cas 9 in MDA-MB-231 and T-47D cells. Apoptosis was monitored by annexin V staining and caspase 3/7 activity. Cytochrome C release and caspase 8 and 9 activities were measured by Western blots. Caspase 8 was inhibited using Z-IETD-FMK and necroptosis was inhibited using necrostatin and necrosulfonamide. RESULTS: Compared to parental cells, NAT1 depleted cells were resistant to drug treatment. This could be reversed following NAT1 rescue of the NAT1 deleted cells. Release of cytochrome C in response to treatment was decreased in the NAT1 depleted cells, suggesting suppression of the intrinsic apoptotic pathway. In addition, NAT1 knockout resulted in a decrease in caspase 8 activation. Treatment with necrosulfonamide showed that NAT1 deficient cells switched from intrinsic apoptosis to necroptosis when treated with the anti-cancer drug cisplatin. CONCLUSIONS: NAT1 deficiency can switch cell death from apoptosis to necroptosis resulting in decreased response to cytotoxic drugs. The absence of NAT1 in patient tumours may be a useful biomarker for selecting alternative treatments in a subset of breast cancer patients.


Asunto(s)
Antineoplásicos , Arilamina N-Acetiltransferasa , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Arilamina N-Acetiltransferasa/deficiencia , Arilamina N-Acetiltransferasa/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 8/uso terapéutico , Muerte Celular , Citocromos c/metabolismo , Citocromos c/uso terapéutico , Femenino , Humanos , Isoenzimas/deficiencia , Isoenzimas/genética , Necroptosis
19.
Rev Sci Instrum ; 93(3): 033201, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364974

RESUMEN

Ultra-high vacuum conditions are ideal for the study of trapped ions. They offer an almost perturbation-free environment, where ions confined in traps can be studied for extended periods of time-facilitating precision measurements and allowing infrequent events to be observed. However, if one wishes to study processes involving molecular ions, it is important to consider the effect of blackbody radiation (BBR). The vast majority of molecular ions interact with BBR. At 300 K, state selection in trapped molecular ions can be rapidly lost (in a matter of seconds). To address this issue, and to maintain state selectivity in trapped molecular ions, a cryogenic ion trap chamber has been constructed and characterized. At the center of the apparatus is a linear Paul ion trap, where Coulomb crystals can be formed for ion-neutral reaction studies. Optical access is provided, for lasers and for imaging of the crystals, alongside ion optics and a flight tube for recording time-of-flight mass spectra. The ion trap region, encased within two nested temperature stages, reaches temperatures below 9 K. To avoid vibrations from the cryocooler impeding laser cooling or imaging of the ions, vibration-damping elements are explicitly included. These components successfully inhibit the coupling of vibrations from the cold head to the ion trap-confirmed by accelerometer measurements and by the resolution of images recorded at the trap center (at 9 and 295 K). These results confirm that the cryogenic ion trap apparatus meets all requirements for studying ion-neutral reactions under cold, controlled conditions.

20.
Biochem Pharmacol ; 200: 115020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358480

RESUMEN

Human arylamine N-acetyltransferase 1 (NAT1) encodes a drug-metabolising enzyme that plays a role in chemical-associated cancer risk, cancer cell survival and mitochondrial function. Its expression and protein activity are regulated by transcriptional, translational, and post-translational processes, including microRNAs such as miR-1290. Several studies have shown the presence of multiple polyadenylation sites in the NAT1 gene. However, their role in NAT1 expression is poorly understood. Here, we have investigated the genetic sequence of the NAT1 gene in human cell lines, peripheral blood mononuclear cells and breast tumour tissue. We identified five potential polyadenylation signals, two of which carry known single nucleotide polymorphism that affect site usage. Cells that are homozygous for adenine at base 1642, the most distal polyadenylation site, use this site whereas those homozygous for cytosine at base 1642 could not. We also found that the presence of adenine at base 1642 is associated with the NAT1*10 haplotype. Because the putative binding site for miR-1290 is located between the last two polyadenylation sites, we hypothesised that cells that do not use the most distal site will be unaffected by miR-1290. However, this was not the case. NAT1 activity was positively correlated with miR-1290, and induction of miR-1290 in SH-SY5Y cells was associated with induction, not inhibition, of NAT1 activity. The use of PolyA1264 or PolyA1642 did not alter NAT1 activity following ectopic expression of a miR-1290 mimic. These results suggest that the role of miR-1290 in the regulation of NAT1 activity is more complex than previously reported.


Asunto(s)
Arilamina N-Acetiltransferasa , MicroARNs , Adenina , Arilamina N-Acetiltransferasa/genética , Humanos , Isoenzimas/genética , Leucocitos Mononucleares/metabolismo , MicroARNs/genética , Poliadenilación , Regiones no Traducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA