Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 34(5): 775-782.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508111

RESUMEN

The folic acid cycle mediates the transfer of one-carbon (1C) units to support nucleotide biosynthesis. While the importance of serine as a mitochondrial and cytosolic donor of folate-mediated 1C units in cancer cells has been thoroughly investigated, a potential role of glycine oxidation remains unclear. We developed an approach for quantifying mitochondrial glycine cleavage system (GCS) flux by combining stable and radioactive isotope tracing with computational flux decomposition. We find high GCS flux in hepatocellular carcinoma (HCC), supporting nucleotide biosynthesis. Surprisingly, other than supplying 1C units, we found that GCS is important for maintaining protein lipoylation and mitochondrial activity. Genetic silencing of glycine decarboxylase inhibits the lipoylation and activity of pyruvate dehydrogenase and impairs tumor growth, suggesting a novel drug target for HCC. Considering the physiological role of liver glycine cleavage, our results support the notion that tissue of origin plays an important role in tumor-specific metabolic rewiring.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ácido Fólico/metabolismo , Glicina/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Humanos , Lipoilación/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/metabolismo
2.
Cell Metab ; 33(1): 190-198.e6, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33326752

RESUMEN

Folate metabolism supplies one-carbon (1C) units for biosynthesis and methylation and has long been a target for cancer chemotherapy. Mitochondrial serine catabolism is considered the sole contributor of folate-mediated 1C units in proliferating cancer cells. Here, we show that under physiological folate levels in the cell environment, cytosolic serine-hydroxymethyltransferase (SHMT1) is the predominant source of 1C units in a variety of cancers, while mitochondrial 1C flux is overly repressed. Tumor-specific reliance on cytosolic 1C flux is associated with poor capacity to retain intracellular folates, which is determined by the expression of SLC19A1, which encodes the reduced folate carrier (RFC). We show that silencing SHMT1 in cells with low RFC expression impairs pyrimidine biosynthesis and tumor growth in vivo. Overall, our findings reveal major diversity in cancer cell utilization of the cytosolic versus mitochondrial folate cycle across tumors and SLC19A1 expression as a marker for increased reliance on SHMT1.


Asunto(s)
Citosol/metabolismo , Ácido Fólico/metabolismo , Glicina Hidroximetiltransferasa/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo , Proteína Portadora de Folato Reducido/genética , Animales , Sistemas CRISPR-Cas/genética , Ciclo del Carbono/genética , Línea Celular , Ácido Fólico/genética , Glicina Hidroximetiltransferasa/deficiencia , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias/patología , Proteína Portadora de Folato Reducido/metabolismo
3.
Plant J ; 101(6): 1269-1286, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657869

RESUMEN

Mitochondria serve as major sites of ATP production and play key roles in many other metabolic processes that are critical to the cell. As relicts of an ancient bacterial endosymbiont, mitochondria contain their own hereditary material (i.e. mtDNA, or mitogenome) and a machinery for protein biosynthesis. The expression of the mtDNA in plants is complex, particularly at the post-transcriptional level. Following transcription, the polycistronic pre-RNAs undergo extensive modifications, including trimming, splicing and editing, before being translated by organellar ribosomes. Our study focuses on N6 -methylation of adenosine ribonucleotides (m6 A-RNA) in plant mitochondria. m6 A is a prevalent modification in nuclear-encoded mRNAs. The biological significance of this dynamic modification is under investigation, but it is widely accepted that m6 A mediates structural switches that affect RNA stability and/or activity. Using m6 A-pulldown/RNA-seq (m6 A-RIP-seq) assays of Arabidopsis and cauliflower mitochondria, we provide information on the m6 A-RNA landscapes in Arabidopsis thaliana and Brassica oleracea mitochondria. The results show that m6 A targets different types of mitochondrial transcripts, including known genes, mtORFs, as well as non-coding (transcribed intergenic) RNA species. While ncRNAs undergo multiple m6 A modifications, N6 -methylation of adenosine residues with mRNAs seem preferably positioned near start codons and may modulate their translatability.


Asunto(s)
Adenosina/metabolismo , Expresión Génica , Mitocondrias/metabolismo , Orgánulos/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación
5.
PLoS One ; 13(7): e0201631, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30059532

RESUMEN

Mitochondria are key sites for cellular energy metabolism and are essential to cell survival. As descendants of eubacterial symbionts (specifically α-proteobacteria), mitochondria contain their own genomes (mtDNAs), RNAs and ribosomes. Plants need to coordinate their energy demands during particular growth and developmental stages. The regulation of mtDNA expression is critical for controlling the oxidative phosphorylation capacity in response to physiological or environmental signals. The mitochondrial transcription termination factor (mTERF) family has recently emerged as a central player in mitochondrial gene expression in various eukaryotes. Interestingly, the number of mTERFs has been greatly expanded in the nuclear genomes of plants, with more than 30 members in different angiosperms. The majority of the annotated mTERFs in plants are predicted to be plastid- or mitochondria-localized. These are therefore expected to play important roles in organellar gene expression in angiosperms. Yet, functions have been assigned to only a small fraction of these factors in plants. Here, we report the characterization of mTERF22 (At5g64950) which functions in the regulation of mtDNA transcription in Arabidopsis thaliana. GFP localization assays indicate that mTERF22 resides within the mitochondria. Disruption of mTERF22 function results in reduced mtRNA accumulation and altered organelle biogenesis. Transcriptomic and run-on experiments suggest that the phenotypes of mterf22 mutants are attributable, at least in part, to altered mitochondria transcription, and indicate that mTERF22 affects the expression of numerous mitochondrial genes in Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Mitocondriales , Mitocondrias/metabolismo , Consumo de Oxígeno/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
6.
mBio ; 4(5): e00443-13, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24129255

RESUMEN

UNLABELLED: The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved "pole-like" sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. IMPORTANCE: Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.


Asunto(s)
Bacillus subtilis/citología , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Escherichia coli/citología , Escherichia coli/enzimología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/genética , Transporte de Proteínas
7.
FEMS Microbiol Rev ; 36(5): 1005-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22775310

RESUMEN

For many years, the bacterial cells were regarded as tiny vessels lacking internal organization. This view, which stemmed from the scarcity of membrane-bounded organelles, has changed considerably in recent years, mainly due to advancements in imaging capabilities. Consequently, despite the rareness of conventional organelles, bacteria are now known to have an intricate internal organization, which is vital for many cellular processes. The list of bacterial macromolecules reported to have distinct localization patterns is rapidly growing. Moreover, time-lapse imaging revealed the spatiotemporal dynamics of various bacterial macromolecules. Although the regulatory mechanisms that underlie macromolecules localization in bacterial cells are largely unknown, certain strategies elucidated thus far include the establishment of cell polarity, the employment of cytoskeletal proteins, and the use of the membrane properties, that is, curvature, electric potential, and composition, as localization signals. The most surprising mechanism discovered thus far is targeting of certain mRNAs to the subcellular domains where their protein products are required. This mechanism relies on localization features in the mRNA itself and does not depend on translation. Localization of other mRNAs near their genetic loci suggests that the bacterial chromosome is involved in organizing gene expression. Taken together, the deep-rooted separation between cells with nucleus and without is currently changing, highlighting bacteria as suitable models for studying universal mechanisms underlying cell architecture.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Sustancias Macromoleculares/metabolismo , Bacterias/genética , Regulación Bacteriana de la Expresión Génica , Transporte de Proteínas
8.
Trends Genet ; 28(7): 314-22, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22521614

RESUMEN

The field of bacterial cell biology has been revolutionized in the last decade by improvements in imaging capabilities which have revealed that bacterial cells, previously thought to be non-compartmentalized, possess an intricate higher-order organization. Many bacterial proteins localize to specific subcellular domains and regulate the spatial deployment of other proteins, DNA and lipids. Recently, the surprising discovery was made that bacterial RNA molecules are also specifically localized. However, the mechanisms that underlie bacterial cell architecture are just starting to be unraveled. The limited number of distribution patterns observed thus far for bacterial proteins and RNAs, and the similarity between the patterns exhibited by these macromolecules, suggest that the processes that underlie their localization are inextricably linked. We discuss these spatial arrangements and the insights that they provide on processes, such as localized translation, protein complex formation, and crosstalk between bacterial machineries.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , Bacterias/genética , Bacterias/metabolismo , Modelos Biológicos , Células Procariotas/metabolismo , Biosíntesis de Proteínas
9.
Science ; 331(6020): 1081-4, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21350180

RESUMEN

Understanding the organization of a bacterial cell requires the elucidation of the mechanisms by which proteins localize to particular subcellular sites. Thus far, such mechanisms have been suggested to rely on embedded features of the localized proteins. Here, we report that certain messenger RNAs (mRNAs) in Escherichia coli are targeted to the future destination of their encoded proteins, cytoplasm, poles, or inner membrane in a translation-independent manner. Cis-acting sequences within the transmembrane-coding sequence of the membrane proteins are necessary and sufficient for mRNA targeting to the membrane. In contrast to the view that transcription and translation are coupled in bacteria, our results show that, subsequent to their synthesis, certain mRNAs are capable of migrating to particular domains in the cell where their future protein products are required.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cloranfenicol/farmacología , Cloranfenicol O-Acetiltransferasa/genética , Cloranfenicol O-Acetiltransferasa/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/genética , Genes Bacterianos , Proteínas de la Membrana/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Conformación de Ácido Nucleico , Operón , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transporte de Proteínas , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transcripción Genética/efectos de los fármacos , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...