Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(24): 4823-4829, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857383

RESUMEN

Herein, we compare the electronic structures of the metal-free and nickel(II) derivatives of an annulated meso-tetraphenyldihydroxychlorin with those of the (metallo)chlorin analogues derived by pyrroline ß,ß'-ring cleavage of the annulated (metallo)chlorins. These (metallo)chlorin analogues incorporate 8-membered heterocycles in place of the pyrroline, carry oxo-functionalities on the former pyrroline ß-carbon atoms, and were previously shown to possess drastically ruffled (twisted) nonplanar conformations. The magnetic circular dichroism spectra of all chromophores investigated feature chlorin-like UV-vis spectra and correspondingly reversed (positive-to-negative in ascending energy) sign sequences in the Q-band region, indicative of ΔHOMO < ΔLUMO relationships. Density functional theory (DFT) calculations indicate that the HOMOs in all compounds are a1u-type molecular orbitals (in traditional for the porphyrin spectroscopy D4h point group). Time-dependent DFT calculations correlate well with the experimental spectra and indicate that Gouterman's four-orbital model can be applied to these chromophores. This work highlights to which degree synthetic chlorin analogues can deviate from the structural parameters of natural chlorins without losing their electronic chlorin characteristics.

2.
J Phys Chem A ; 127(37): 7694-7706, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37690121

RESUMEN

The introduction of three ß-oxosubstituents to octaethylporphyrin by means of an oxidation/rearrangement reaction generates the trioxopyrrocorphin chromophore. Pyrrocorphins (hexahydroporphyrins) are generally nonaromatic, but we recently demonstrated trioxopyrrocorphins to possess considerable aromatic character. This contribution explores the photophysical characteristics of these unusual chromophores. In agreement with density functional theory modeling, the UV-vis and magnetic circular dichroism spectra of the two─out of the four possible─triketone regioisomers investigated conform to the Gouterman model of porphyrinoid optical spectra, in alignment with their aromaticity. Their excited-state dynamics shed further light on the degree to which ß-oxo substitutions tune the photophysical properties of porphyrinoids. Introduction of ß-oxo functionalities increases the rate and yield of intersystem crossing and shortens the triplet state lifetime. Unexpectedly, the singlet oxygen generation yield of both pyrrocorphins remains relatively high, with modes of distortion from planarity likely enhancing triplet energy transfer. This work thus expands our understanding of a rare class of porphyrinoids and further characterizes them as sustaining aromatic porphyrinic π-systems. Our findings suggest triple ß-oxo substitution as a viable route toward the development of novel, high-singlet oxygen yield porphyrinic photosensitizers.

3.
J Phys Chem Lett ; 14(33): 7382-7388, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37566694

RESUMEN

We report a systematic investigation of a series of Ag(II) and Ag(III) complexes of porphyrins and their analogues using UV-vis magnetic circular dichroism (MCD) spectroscopies and theoretical calculations. Ag(II) and Ag(III) octaethyl- and tetraarylporphyrins show the usual sign sequence in the Q-band region (i.e., negative to positive intensities with increasing energy) of their MCD spectra, indicative of the ΔHOMO > ΔLUMO relationship (ΔHOMO is the energy difference between Michl's a and s orbitals, and ΔLUMO is the energy difference between Michl's -a and -s pair of MOs). In contrast, Ag(II) complexes of ß,ß'-pyrrole-modified porphyrins (with an effective chlorin-type π-system) and Ag(III) corroles have sign reverse features in the MCD spectra of their Q-band region (ΔHOMO < ΔLUMO relationships). The Ag(III) complex of N-confused porphyrin shows the ΔHOMO > ΔLUMO relationship in the neutral state and the ΔHOMO < ΔLUMO relationship in the protonated form.

4.
Inorg Chem ; 62(26): 10203-10220, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37348114

RESUMEN

Solid-state Mössbauer spectra of a highly soluble (µ-oxo)bis[tetra(tert-butyl)(phthalocyaninato)iron(III)] complex 1 ((PctBuFe)2O) consist of two doublets that represent bent geometry in µ-oxo(1) (1a, ΔEQ = 0.43 mm/s, T = 10 K) and linear geometry in µ-oxo(2) (1b, ΔEQ = 1.40 mm/s, T = 10 K) isomers with the ratio between two isomers depending on the purification method. Both isomers were found to be diamagnetic and transform entirely to the 1a isomer in solution. The room- and low-temperature magnetic circular dichroism (MCD) spectra of 1a µ-oxo(1) show one Faraday A- and one B-term between 670 and 720 nm, which correlate with the 690 nm band and 709 nm shoulder observed in the UV-vis spectrum of this compound. UV-vis and MCD spectra of 1a are almost independent of the temperature. Both 1a and 1b are diamagnetic between room temperature and 4 K. Electrochemical experiments show up to three oxidations and up to four reduction processes in 1a. Its oxidation under spectroelectrochemical or chemical (in the absence of oxygen-containing oxidants) conditions in non-coordinating solvents results in the formation of broad NIR bands around 1195 nm (first oxidation) and 1264 nm (second oxidation). The MCD spectra of the redox-active species show a Faraday B-term signal with negative amplitude in this region and are very different from those in the monomeric PctBu(1-)FeIIIX2 complexes 5X (X = Cl- or CF3CO2-). The pyridine adduct of 1a ((PyPctBuFe)2O; 2Py) is paramagnetic (µB = 2.19, g = 2.11, and J = -6.1 cm-1) and has a major peak at 627 nm of its UV-vis spectrum, which is associated with a MCD pseudo A-term. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, along with the exciton coupling theory, were used to explain the unusually red-shifted intense transitions in 1a as well as the H-aggregate-like spectra of the pyridine adduct 2Py.

5.
Inorg Chem ; 61(50): 20177-20199, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36472380

RESUMEN

The reduction of iron(II) phthalocyanine (Pc(2-)FeII) or its bisaxially coordinated complexes results in the formation of the purple/red [PcFe]-, [PcFeL]-, and [PcFeX]2- (L is neutral and X is anionic ligand) species. The X-ray structure of the [K(DME)4][PcFe] complex exhibits a square-planar [PcFe]- anion. 1H NMR spectra of the reduced species have one or two phthalocyanine broad peaks between 15 and 17 ppm. Solution magnetic moments are consistent with the presence of a single unpaired electron. A solid-state Mössbauer spectrum of [K(DME)4][PcFe] is consistent with an early report [Taube, R. Pure Appl. Chem.1974, 38, 427-438]. The solid-state EPR spectrum of the [PcFe]- anion is close to that recorded by Konarev et al. [ Dalton Trans.2012, 41, 13841-13847]. Solution EPR spectra of reduced species have axial symmetry (g⊥ ∼ 2.08-2.17 and g|| ∼ 1.95-1.96) and correlate well with spectra reported by Lever and Wilshire in 1978 [ Inorg. Chem.1978, 17, 1145-1151]. The UV-vis spectra of pentacoordinated [PcFeL]- and [PcFeX]2- anions consist of the characteristic bands around 810, 690, and 515 nm. These bands correlate well with the set of MCD pseudo A-terms and resemble transitions in the [Pc(3-)M]- and [Pc(3-)ML]- compounds. The UV-vis and MCD spectra of [PcFeL]- and [PcFeX]2- complexes are in stark contrast to the crystallographically characterized reference [Pc(2-)CoI]- anion, which is EPR silent, has a regular diamagnetic 1H NMR spectrum, and has an intense Q-band at 699 nm, which correlates well with the strong MCD A-term. The DFT and TDDFT calculations are suggestive of the iron(II) center in a (dxy)2(dxz,yz)3(dz2)1 (s = 1) electronic configuration that is antiferromagnetically coupled with the one-electron-reduced Pc(3-) ligand (i.e., [Pc(3-)FeII]-, [Pc(3-)FeIIL]-, and [Pc(3-)FeIIX]2-). The calculated EPR, Mössbauer, and UV-vis spectra of [PcFe]-, [PcFeL]-, and [PcFeX]2- complexes are in excellent agreement with the experimental data, thus resolving the controversy between axial s = 1/2 like EPR and Pc(3-)-like UV-vis spectra of these compounds.


Asunto(s)
Electrones , Hierro , Ligandos , Espectroscopía de Resonancia por Spin del Electrón , Hierro/química , Aniones , Compuestos Ferrosos
6.
Inorg Chem ; 61(21): 8250-8266, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35549169

RESUMEN

The position of the experimentally observed (in the UV-vis and magnetic circular dichroism (MCD) spectra) low-energy metal-to-ligand charge-transfer (MLCT) band in low-spin iron(II) phthalocyanine complexes of general formula PcFeL2, PcFeL'L″, and [PcFeX2]2- (L, L', or L″ are neutral and X- is an anionic axial ligand) was correlated with the Lever's electrochemical EL scale values for the axial ligands. The time-dependent density functional theory (TDDFT)-predicted UV-vis spectra are in very good agreement with the experimental data for all complexes. In the majority of compounds, TDDFT predicts that the first degenerate MLCT band that correlates with the MCD A-term observed between 360 and 480 nm is dominated by an eg (Fe, dπ) → b1u (Pc, π*) single-electron excitation (in traditional D4h point group notation) and agrees well with the previous assignment discussed by Stillman and co-workers[ Inorg. Chem. 1994, 33, 573-583]. The TDDFT calculations also suggest a small energy gap for b1u/b2u (Pc, π*) orbital splitting and closeness of the MLCT1 eg (Fe, dπ) → b1u (Pc, π*) and MLCT2 eg (Fe, dπ) → b2u (Pc, π*) transitions. In the case of the PcFeL2 complexes with phosphines as the axial ligands, additional degenerate charge-transfer transitions were observed between 450 and 500 nm. These transitions are dominated by a2u (Pc + L, π) → eg (Pc, π*) single-electron excitations and are unique for the PcFe(PR3)2 complexes. The energy of the phthalocyanine-based a2u orbital has large axial ligand dependency and is the reason for a large energy deviation for B1 a2u (Pc + L, π) → eg (Pc, π*) transition. The energies of the axial ligand-to-iron, axial ligand-to-phthalocyanine, iron-to-axial ligand, and phthalocyanine-to-axial ligand charge-transfer transitions were discussed on the basis of TDDFT calculations.

7.
ACS Phys Chem Au ; 2(6): 468-481, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36855607

RESUMEN

Unsymmetric pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins were designed and synthesized. The cross-conjugated (AM 1 -AM 3 ) and linear-conjugated (AM 5 -AM 7 ) porphyrins displayed strikingly different sets of optical and electronic properties, both of which are unusual and nontypical of porphyrins. MCD, DFT, and TDDFT calculations suggest that multiple charge transfer states exist in both π-conjugated systems, which contributes to the complex absorption and MCD spectra of these molecular systems. The general Gouterman's four-orbital model used to explain porphyrin spectroscopy led to contradicting theoretical and experimental data, and is thus not applicable for these molecular systems. The "2 + 4" and "3 + 3" active spaces have been deduced and have proven effective to interpret the absorption and MCD spectra of the pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins, respectively. Spectroelectrochemistry of AM 5 -AM 7 revealed broad and intense IR absorptions in the range of 1500-2500 nm, illustrating the exceptional ability of these pentacene-fused systems to accommodate positive charges. A pronounced metal effect was observed for pentacene-fused porphyrins. While pentacene-fused Ni(II) porphyrin (AM6 ) demonstrated an abnormal ability to stabilize pentacene with a half-life of >28.3 days, the half-life of the free base and Zn(II) counterparts were normal, similar to those of pentacene analogues. This work provides important and useful information on guiding new material designs.

8.
Inorg Chem ; 60(21): 16626-16644, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644056

RESUMEN

The electronic structures and, particularly, the nature of the HOMO in a series of PcFeL2, PcFeL'L″, and [PcFeX2]2- complexes (Pc = phthalocyaninato(2-) ligand; L = NH3, n-BuNH2, imidazole (Im), pyridine (Py), PMe3, PBu3, t-BuNC, P(OBu)3, and DMSO; L' = CO; L″ = NH3 or n-BuNH2; X = NCO-, NCS-, CN-, imidazolate (Im-), or 1,2,4-triazolate(Tz-)) were probed by electrochemical, spectroelectrochemical, and chemical oxidation as well as theoretical (density functional theory, DFT) studies. In general, energies of the metal-centered occupied orbitals in various six-coordinate iron phthalocyanine complexes correlate well with Lever Electrochemical Parameter EL and intercross the phthalocyanine-centered a1u orbital in several compounds with moderate-to-strong π-accepting axial ligands. In these cases, an oxidation of the phthalocyanine macrocycle (Pc(2-)/Pc(1-)) rather than the central metal ion (Fe(II)/Fe(III)) was theoretically predicted and experimentally confirmed.

9.
Chemistry ; 27(65): 16189-16203, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34535932

RESUMEN

It is well-known that treatment of ß-octaethylporphyrin with H2 O2 /conc. H2 SO4 converts it to a ß-oxochlorin as well as all five constitutional isomers of the corresponding ß,ß'-dioxo-derivatives: two bacteriochlorin-type isomers (ß-oxo groups at opposite pyrrolic building blocks) and three isobacteriochlorin-type isomers (ß-oxo-groups at adjacent pyrrolic building blocks). By virtue of the presence of the strongly electronically coupled ß-oxo auxochromes, none of the chromophores are archetypical chlorins, bacteriochlorins, or isobacteriochlorins. Here the authors present, inter alia, the single crystal X-ray structures of all free-base diketone isomers and a comparative description of their UV-vis absorption spectra in neutral and acidic solutions, and fluorescence emission and singlet oxygen photosensitization properties, Magnetic Circular Dichroism (MCD) spectra, and singlet excited state lifetimes. DFT computations uncover underlying tautomeric equilibria and electronic interactions controlling their electronic properties, adding to the understanding of porphyrinoids carrying ß-oxo functionalities. This comparative study lays the basis for their further study and utilization.


Asunto(s)
Porfirinas , Fluorescencia , Isomerismo , Estructura Molecular , Pirroles
10.
J Phys Chem A ; 125(12): 2480-2491, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33734683

RESUMEN

The ability of density functional theory (DFT) and time-dependent DFT (TDDFT) methods for the accurate prediction of the energies and oscillator strengths of the excited states in a series of fully conjugated meso-meso ß-ß ß-ß triple-linked porphyrin oligomers (porphyrin tapes 2-12) was probed in the gas phase and solution using several exchange-correlation functionals. It was demonstrated that the use of the hybrid B3LYP functional provides a good compromise for the accurate prediction of the localized π-π* and intramolecular charge-transfer transitions, thus allowing confident interpretation of the UV-vis-NIR spectra of porphyrin oligomers. The TDDFT-based sum-over-state (SOS) calculations for the porphyrin tape dimer 2 and trimer 3 as well as parent monomer 1 correctly predicted the signs and shapes of the magnetic circular dichroism (MCD) signals in the low-energy region of the spectra.

11.
Inorg Chem ; 60(6): 3690-3706, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33651595

RESUMEN

Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.

12.
Inorg Chem ; 59(10): 7290-7305, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32374995

RESUMEN

A series of PtII-based monometallic (H2PtL), homobimetallic (Pt2L), and heterobimetallic (NiPtL and PdPtL) group 10 complexes of the previously established expanded twin porphyrin (H4L) were prepared. Structural characterization of the bimetallic PtII series (Pt2L, NiPtL, and PdPtL) revealed their similar general structures, with slight differences correlated to the ion size. An improvement of the metal-ion insertion process also allowed efficient preparation of the known Pd2L complex, and the novel heterobimetallic NiPdL complex was also structurally characterized. UV-vis spectroscopy, NMR spectroscopy, magnetic circular dichroism (MCD), and (spectro)electrochemistry were used to characterize the complexes; the electronic properties followed largely established lines for metal complexes of the twin porphyrin, except that the PtII-based systems exhibited more complex UV-vis spectral signatures. MCD spectra accompanied by density functional theory (DFT)/time-dependent DFT computations (TDDFT) rationalize the origins of the optical features of the twin porphyrin. The presence of the nonplanar, nonaromatic macrocyclic π system with conjugation pathways confined to each half of the molecule could be visualized. Significant pyrazole(π) → pyrrole(π*) charge-transfer character was predicted for several transitions in the visible region. This study adds to our fundamental understanding of the formation, structure, and electronic structure of bimetallic complexes of this class of expanded metalloporphyrins containing nonpyrrolic moieties.

13.
Inorg Chem ; 58(20): 14120-14135, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31589034

RESUMEN

The chemically or spectroelectrochemically generated formation and aggregation of zinc(II) tetra-tert-butylphthalocyanine cation radical [ZnPctBu]+•, which was highly soluble in common organic solvents, were investigated using UV-vis and magnetic circular dichroism (MCD) spectroscopies with an emphasis on the influence of the axial ligand on the fingerprint (∼500 nm) and NIR (720∼1000 nm) spectral envelopes. MCD spectroscopy is suggestive that the NIR band at ∼1000 nm observed for the antiferromagnetically coupled cation radical dimer, [ZnPctBu]22+, has no degeneracy, the monomer-dimeric equilibrium is temperature dependent, and higher degree aggregates can be formed at specific conditions. Sixteen different exchange-correlation functionals were tested to accurately predict the energies, intensities, and profiles of the UV-vis and MCD spectra of the phthalocyanine cation radical monomer and dimer. It was found that the M05 exchange-correlation functional (along with several other functionals that include 27-42% of Hartree-Fock exchange) provided an excellent agreement (∼0.1 eV for the degenerate excited states observed by MCD spectroscopy) between theory and experiment for the phthalocyanine cation-radical monomer and dimer. Not only did time-dependent density functional theory (TDDFT) calculations with M05 exchange-correlation functional correctly predict the nondegenerate NIR charge-transfer band at ∼1000 nm, all degenerate excited states, monomer and dimer energies, and oscillator strengths, but also they correctly described the nature of the experimentally observed at ∼500 nm MCD B-term (fingerprint band) detected for both the monomeric and dimeric phthalocyanine cation radicals. The TDDFT data explain the similarities in the UV-vis and MCD spectra of the monomeric and dimeric species observed between the UV and fingerprint spectral envelopes as well as correctly predicted the antiferromagnetic coupling between the two singly oxidized phthalocyanine macrocycles in the dimer.

14.
J Inorg Biochem ; 199: 110793, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31357069

RESUMEN

Two cationic zinc phthalocyanines have been tested for their interactions with several DNA secondary structures. Despite different aggregation properties, both phthalocyanines bind to DNA in monomeric forms. The strong photodynamic activity of phthalocyanines was demonstrated by in vitro experiments and correlate well with high singlet oxygen yields determined experimentally with 1,3-diphenylisobenzofurane. Both phthalocyanines accumulate in the cell cytoplasm prior to radiation; however, only the octacationic photosensitizer was observed in the cell nuclei after irradiation.


Asunto(s)
ADN/química , Indoles/química , Compuestos Organometálicos/química , Comunicación Celular , Dicroismo Circular , Citoplasma/metabolismo , Humanos , Isoindoles , Células MCF-7 , Microscopía Confocal , Neoplasias/terapia , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Compuestos de Zinc
15.
Inorg Chem ; 56(19): 11640-11653, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28920685

RESUMEN

2,3,9,10,16,17,23·24-Octakis-(9H-carbazol-9-yl) phthalocyaninato zinc(II) (3) and 2,3,9,10,16,17,23·24-octakis-(3,6-di-tert-butyl-9H-carbazole) phthalocyaninato zinc(II) (4) complexes were prepared and characterized by NMR and UV-vis spectroscopies, magnetic circular dichroism (MCD), matrix-assisted laser desorption ionization mass spectrometry, and X-ray crystallography. UV-vis and MCD data are indicative of the interligand charge-transfer nature of the broad band observed in 450-500 nm range for 3 and 4. The redox properties of 3 and 4 were probed by electrochemical and spectro-electrochemical methods, which are suggestive of phthalocyanine-centered first oxidation and reduction processes. Photophysics of 3 and 4 were investigated by steady-state fluorescence and time-resolved transient absorption spectroscopy demonstrating the influence of the carbazole substituents on deactivation from the first excited state in 3 and 4. Protonation of the meso-nitrogen atoms in 3 results in much faster deactivation kinetics from the first excited state. Spectroscopic data were correlated with density functional theory (DFT) and time-dependent DFT calculations on 3 and 4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...