Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 134: 388-400, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314888

RESUMEN

The cranial meninges have been shown to play a pivotal role in traumatic brain injury mechanopathology. However, while the mechanical response of the brain and its many subregions have been studied extensively, the meninges have conventionally been overlooked. This paper presents the first comparative mechanical analysis of human dura mater, falx cerebri and superior sagittal sinus tissues. Biaxial tensile analysis identified that these tissues are mechanically heterogeneous, in contrast to the assumption that the tissues are mechanically homogeneous which is typically employed in FE model design. A thickness of 0.91 ± 0.05 (standard error) mm for the falx cerebri was also identified. This data can aid in improving the biofidelity of the influential falx structure in FE models. Additionally, the use of a collagen hybridizing peptide on the superior sagittal sinus suggests this structure is particularly susceptible to the effects of circumferential stretch, which may have important implications for clinical treatment of dural venous sinus pathologies. Collectively, this research progresses understanding of meningeal mechanical and structural characteristics and may aid in elucidating the behaviour of these tissues in healthy and diseased conditions. STATEMENT OF SIGNIFICANCE: This study presents the first evaluation of human falx cerebri and superior sagittal sinus mechanical, geometrical and structural properties, along with a comparison to cranial dura mater. To mechanically characterise the tissues, biaxial tensile testing is conducted on the tissues. This analysis identifies, for the first time, mechanical stiffness differences between these tissues. Additionally, geometrical analysis identifies that there are thickness differences between the tissues. The evaluation of human meningeal tissues allows for direct implementation of the novel data to finite element head injury models to enable improved biofidelity of these influential structures in traumatic brain injury simulations. This work also identifies that the superior sagittal sinus may be easily damaged during clinical angioplasty procedures, which may inform the treatment of dural sinus pathologies.


Asunto(s)
Duramadre , Seno Sagital Superior , Encéfalo , Senos Craneales , Humanos , Meninges
2.
J Neurotrauma ; 38(13): 1748-1761, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191848

RESUMEN

The meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues. Publications were identified from a search of Scopus, Academic Search Complete, and Web of Science and screened for eligibility according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review details the wide range of testing techniques employed to date and the significant variability in the observed experimental findings. Our findings identify many gaps in the current literature that can serve as a guide for future work for meningeal mechanics investigators. The review identifies no peer-reviewed mechanical data on the falx and tentorium tissues, both of which have been identified as key structures in influencing brain injury mechanics. A dearth of mechanical data for the pia-arachnoid complex also was identified (no experimental mechanics studies on the human pia-arachnoid complex were identified), which is desirable for biofidelic modeling of human head injuries. Finally, this review provides recommendations on how experiments can be conducted to allow for standardization of test methodologies, enabling simplified comparisons and conclusions on meningeal mechanics.


Asunto(s)
Aracnoides/fisiología , Fenómenos Biomecánicos/fisiología , Duramadre/fisiología , Piamadre/fisiología , Animales , Aracnoides/citología , Encéfalo/citología , Encéfalo/fisiología , Duramadre/citología , Humanos , Meninges/citología , Meninges/fisiología , Piamadre/citología
3.
Sci Rep ; 10(1): 21763, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303894

RESUMEN

The dural venous sinuses play an integral role in draining venous blood from the cranial cavity. As a result of the sinuses anatomical location, they are of significant importance when evaluating the mechanopathology of traumatic brain injury (TBI). Despite the importance of the dural venous sinuses in normal neurophysiology, no mechanical analyses have been conducted on the tissues. In this study, we conduct mechanical and structural analysis on porcine dural venous sinus tissue to help elucidate the tissues' function in healthy and diseased conditions. With longitudinal elastic moduli values ranging from 33 to 58 MPa, we demonstrate that the sinuses exhibit higher mechanical stiffness than that of native dural tissue, which may be of interest to the field of TBI modelling. Furthermore, by employing histological staining and a colour deconvolution protocol, we show that the sinuses have a collagen-dominant extracellular matrix, with collagen area fractions ranging from 84 to 94%, which likely explains the tissue's large mechanical stiffness. In summary, we provide the first investigation of the dural venous sinus mechanical behaviour with accompanying structural analysis, which may aid in understanding TBI mechanopathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/patología , Venas Cerebrales/fisiopatología , Senos Craneales/fisiopatología , Duramadre/irrigación sanguínea , Rigidez Vascular , Animales , Lesiones Traumáticas del Encéfalo/epidemiología , Venas Cerebrales/patología , Comorbilidad , Senos Craneales/patología , Modelos Animales de Enfermedad , Hematoma Subdural Agudo/epidemiología , Hematoma Subdural Agudo/etiología , Porcinos
4.
Acta Biomater ; 80: 237-246, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30208332

RESUMEN

The meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation. STATEMENT OF SIGNIFICANCE: This study addresses the lack of regional mechanical analysis of the cortical meninges, particularly the dura mater (DM), with accompanying biochemical analysis. To mechanically characterise the stiffness of the DM by region, uniaxial tensile testing was carried out on the DM tissue adjacent to the frontal, parietal, temporal and occipital lobes along with the DM tissue associated with the superior sagittal sinus. To the best of the authors' knowledge, the work presented here identifies, for the first time, the heterogeneous nature of the DM's mechanical stiffness by region. In particular, this study identifies the significant difference in the stiffness of the DM tissue associated with the superior sagittal sinus when compared to the other DM regions. Constitutive modelling was carried out on the regional mechanical testing data for implementation in Finite Element models with improved biofidelity. This work also presents the first biochemical analysis of the collagen I and III, elastin, and fibronectin content within DM tissue by region, providing useful insights into the accompanying macro-scale biomechanical data.


Asunto(s)
Corteza Cerebral/fisiología , Meninges/fisiología , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Duramadre/fisiología , Módulo de Elasticidad , Elastina/metabolismo , Fibronectinas/metabolismo , Porcinos
5.
Lymphat Res Biol ; 15(3): 204-219, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28749743

RESUMEN

The lymphatic system serves as the primary route for the metastatic spread of breast cancer cells (BCCs). A scarcity of information exists with regard to the advection of BCCs in lymph flow and a fundamental understanding of the response of BCCs to the forces in the lymphatics needs to be established. This review summarizes the flow environment metastatic BCCs are exposed to in the lymphatics. Special attention is paid to the behavior of cells/particles in microflows in an attempt to elucidate the behavior of BCCs under lymph flow conditions (Reynolds number <1).


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Hidrodinámica , Sistema Linfático/patología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Adhesión Celular , Femenino , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática , Sistema Linfático/diagnóstico por imagen , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/fisiología , Modelos Biológicos , Microambiente Tumoral
6.
Biomicrofluidics ; 11(3): 034105, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28529671

RESUMEN

The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100 µm square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = dp/H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions (Re < 1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo. This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA