Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 14: 1281733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298607

RESUMEN

Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications.

3.
Food Chem ; 390: 133165, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561509

RESUMEN

This study investigates the reduction of aflatoxin M1 (AFM1) in skim milk by using ultraviolet light at 254 nm and the effects of influencing factors on the efficacy including treatment time (min), depth of samples (mm), contamination level (µg L-1), stirring, temperature, and fat content in milk. The colour and pH of milk samples were measured to evaluate the influence of the treatment on these values. It was found that short-wave ultraviolet radiation (UVC) reduced up to 50% of AFM1 in milk after 20 min of treatment regardless of the initial AFM1 contamination level. Treatment time, depth of samples, and stirring were all found to significantly (P < 0.05) enhance the reduction of AFM1. The milk colour was affected but there was no influence on the pH of milk samples at any duration of UV exposure. It is concluded that UVC light treatment has the potential to reduce AFM1 in milk.


Asunto(s)
Aflatoxina M1 , Leche , Aflatoxina M1/análisis , Animales , Contaminación de Alimentos/análisis , Leche/química , Rayos Ultravioleta
4.
Carbohydr Res ; 510: 108445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607125

RESUMEN

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Hexosaminas/biosíntesis , Fosfatos de Azúcar/biosíntesis , Proteínas Bacterianas/química , Conformación de Carbohidratos , Carbohidrato Epimerasas/química , Hexosaminas/química , Staphylococcus aureus/enzimología , Fosfatos de Azúcar/química
5.
J Med Chem ; 59(21): 9686-9720, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548560

RESUMEN

The parasitic trypanosomes Trypanosoma brucei and T. cruzi are responsible for significant human suffering in the form of human African trypanosomiasis (HAT) and Chagas disease. Drugs currently available to treat these neglected diseases leave much to be desired. Herein we report optimization of a novel class of N-(2-(2-phenylthiazol-4-yl)ethyl)amides, carbamates, and ureas, which rapidly, selectively, and potently kill both species of trypanosome. The mode of action of these compounds is unknown but does not involve CYP51 inhibition. They do, however, exhibit clear structure-activity relationships, consistent across both trypanosome species. Favorable physicochemical parameters place the best compounds in CNS drug-like chemical space but, as a class, they exhibit poor metabolic stability. One of the best compounds (64a) cleared all signs of T. cruzi infection in mice when CYP metabolism was inhibited, with sterile cure achieved in one mouse. This family of compounds thus shows significant promise for trypanosomiasis drug discovery.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Descubrimiento de Drogas , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/química , Animales , Humanos , Ratones , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Esterol 14-Desmetilasa/metabolismo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
6.
J Org Chem ; 81(8): 3127-35, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27002792

RESUMEN

The first systematic investigation into the Baeyer-Villiger reaction of an anthraquinone is presented. The double Baeyer-Villiger reaction of quinizarin dimethyl ether is viable, directly providing the dibenzo[b,f][1,4]-dioxocin-6,11-dione ring-system, which is otherwise difficult to prepare. This methodology provides rapid access to 1,2,3,4-tetraoxygenated benzenes, and has been exploited by application to the total synthesis of a natural occurring benzodioxole and its biphenyl dimer, which both display noteworthy biological activity. Interestingly, the axially chiral biphenyl was found to be configurationally stable, but the resolved enantiomers exhibit no optical activity at the αD-line.


Asunto(s)
Antraquinonas/química , Antrodia/química , Derivados del Benceno/síntesis química , Benzodioxoles/química , Productos Biológicos/síntesis química , Dioxinas/química , Éteres/química , Derivados del Benceno/química , Productos Biológicos/química , Oxidación-Reducción , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...