Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 142 ( Pt 6): 1477-1490, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8704987

RESUMEN

Genetic evidence suggests that the activity of the native QUTA transcription activator protein is negated by the action of the QUTR transcription repressor protein. When Aspergillus nidulans was transformed with plasmids containing the wild-type qutA gene, transformants that constitutively expressed the quinate pathway enzymes were isolated. The constitutive phenotype of these transformants was associated with an increased copy number of the transforming qutA gene and elevated qutA mRNA levels. Conversely, when A. nidulans was transformed with plasmids containing the qutR gene under the control of the constitutive pgk promoter, transformants with a super-repressed phenotype (unable to utilize quinate as a carbon source) were isolated. The super-repressed phenotype of these transformants was associated with an increased copy number of the transforming qutR gene and elevated qutR mRNA levels. These copy-number-dependent phenotypes argue that the levels of the QUTA and QUTR proteins were elevated in the high-copy-number transformants. When diploid strains were formed by combining haploid strains that contained high copy numbers of either the qutA gene (constitutive phenotype) or the qutR gene (super-repressing; non-inducible phenotype), the resulting diploid phenotype was one of quinate-inducible production of the quinate pathway enzymes, in a manner similar to wild-type. The simplest interpretation of these observations is that the QUTR repressor protein mediates its repressing activity through a direct interaction with the QUTA activator protein. Other possible interpretations are discussed in the text. Experiments in which truncated versions of the QUTA protein were produced in the presence of a wild-type QUTA protein indicate that the QUTR repressor protein recognizes and binds to the C-terminal half of the QUTA activator protein.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Aspergillus nidulans/genética , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica , Hidroliasas/metabolismo , Ácido Quínico/metabolismo , Proteínas Represoras/fisiología , Transactivadores/fisiología , Aspergillus nidulans/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN/genética , Diploidia , Proteínas Fúngicas/genética , Genes Fúngicos , Vectores Genéticos/genética , Haploidia , Datos de Secuencia Molecular , Fenotipo , Regiones Promotoras Genéticas , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transactivadores/genética , Transformación Genética
2.
Microbiology (Reading) ; 142 ( Pt 1): 87-98, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8581174

RESUMEN

QUTA is a positively acting regulatory protein that regulates the expression of the eight genes comprising the quinic acid utilization gene (qut) gene cluster in Aspergillus nidulans. It has been proposed that the QUTA protein is composed of two domains that are related to the N-terminal two domains-dehydroquinate (DHQ) synthase and 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase-of the pentadomain AROM protein. The AROM protein is an enzyme catalysing five consecutive steps in the shikimate pathway, two of which are common to the qut pathway. A genetic and molecular analysis of non-inducible qutA mutants showed that all 23 mutations analysed map within the N-terminal half of the encoded QUTA protein. One dominant mutation (qutA382) introduces a stop codon at the boundary between the two domains that were identified on the basis of amino acid sequence alignments between the QUTA protein and the N-terminal two domains of the pentafunctional AROM protein. The truncated protein encoded by mutant qutA382 has DNA-binding ability but no transcription activation function. A second dominant mutation (in strain qutA214) is missense, changing 457E-->K in a region of localized high negative charge and potentially identifies a transcription activation domain in the N-terminus of the EPSP-synthase-like domain of the QUTA protein. A series of qualitative and quantitative Northern blot experiments with mRNA derived from wild-type and mutant qutA strains supported the view that the QUTA protein regulates the expression of the qut gene cluster, including the qutA gene which encodes it. A series of Western blot and zinc-binding experiments demonstrated that a putative zinc binuclear cluster motif located within the N-terminus of the QUTA protein is able to bind zinc in vitro.


Asunto(s)
Transferasas Alquil y Aril , Aspergillus nidulans/genética , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Liasas de Fósforo-Oxígeno , Transactivadores/genética , Transcripción Genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Oxidorreductasas de Alcohol/genética , Mapeo Cromosómico , Codón de Terminación , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Hidroliasas/genética , Liasas/genética , Metaloproteínas , Complejos Multienzimáticos/genética , Mutación , Fragmentos de Péptidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estructura Terciaria de Proteína , Recombinación Genética , Análisis de Secuencia de ADN , Eliminación de Secuencia , Transactivadores/metabolismo , Transferasas/genética , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA