Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Br J Cancer ; 128(11): 2089-2096, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966234

RESUMEN

BACKGROUND: Costello syndrome (CS) is a cancer-predisposition disorder caused by germline pathogenic variants in HRAS. We conducted a systematic review using case reports and case series to characterise cancer risk in CS. METHODS: We conducted a systematic review to identify CS cases to create a retrospective cohort. We tested genotype-phenotype correlations and calculated cumulative incidence and hazard rates (HR) for cancer and cancer-free death, standardised incidence rates (SIR) and survival after cancer. RESULTS: This study includes 234 publications reporting 621 patients from 35 countries. Over nine percent had cancer, including rhabdomyosarcoma, bladder, and neuroblastoma. The rate of cancer and death associated with p.Gly12Ser were lower when compared to all other variants (P < 0.05). Higher mortality for p.Gly12Cys, p.Gly12Asp, p.Gly12Val and p.Gly60Val and higher malignancy rate for p.Gly12Ala were confirmed (P < 0.05). Cumulative incidence by age 20 was 13% (cancer) and 11% (cancer-free death). HR (death) was 3-4% until age 3. Statistically significant SIRs were found for rhabdomyosarcoma (SIR = 1240), bladder (SIR = 1971), and neuroblastoma (SIR = 60). Survival after cancer appeared reduced. CONCLUSIONS: This is the largest investigation of cancer in CS to date. The high incidence and SIR values found to highlight the need for rigorous surveillance and evidence-based guidelines for this high-risk population.


Asunto(s)
Síndrome de Costello , Neuroblastoma , Rabdomiosarcoma , Humanos , Síndrome de Costello/genética , Síndrome de Costello/patología , Estudios Retrospectivos , Genotipo
3.
Am J Med Genet C Semin Med Genet ; 190(4): 530-540, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36533693

RESUMEN

RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.


Asunto(s)
Síndrome de Costello , Neoplasias , Síndrome de Noonan , Humanos , Síndrome de Noonan/epidemiología , Síndrome de Noonan/genética , Síndrome de Noonan/patología , Síndrome de Costello/epidemiología , Síndrome de Costello/genética , Incidencia , Estudios Retrospectivos , Proteínas ras/genética , Neoplasias/epidemiología , Neoplasias/genética
4.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35352806

RESUMEN

RAS mutations occur in a broad spectrum of human hematopoietic malignancies. Activating Ras mutations in blood cells leads to hematopoietic malignancies in mice. In murine hematopoietic stem cells (HSCs), mutant N-RasG12D activates Stat5 to dysregulate stem cell function. However, the underlying mechanism remains elusive. In this study, we demonstrate that Stat5 activation induced by a hyperactive Nras mutant, G12D, is dependent on Jak2 activity. Jak2 is activated in Nras mutant HSCs and progenitors (HSPCs), and inhibiting Jak2 with ruxolitinib significantly decreases Stat5 activation and HSPC hyper-proliferation in vivo in NrasG12D mice. Activation of Jak2-Stat5 is associated with downregulation of Socs2, an inhibitory effector of Jak2/Stat5. Restoration of Socs2 blocks NrasG12D HSC reconstitution in bone marrow transplant recipients. SOCS2 downregulation is also observed in human acute myeloid leukemia (AML) cells that carry RAS mutations. RAS mutant AML cells exhibited suppression of the enhancer active marker H3K27ac at the SOCS2 locus. Finally, restoration of SOCS2 in RAS mutant AML cells mitigated leukemic growth. Thus, we discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2.


Asunto(s)
Epigénesis Genética , Genes ras , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Proteínas Supresoras de la Señalización de Citocinas , Animales , Regulación hacia Abajo , Neoplasias Hematológicas/genética , Ratones , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
6.
Genes Dev ; 35(3-4): 218-233, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446568

RESUMEN

Pancreatic ductal adenocarcinoma is a lethal disease characterized by late diagnosis, propensity for early metastasis and resistance to chemotherapy. Little is known about the mechanisms that drive innate therapeutic resistance in pancreatic cancer. The ataxia-telangiectasia group D-associated gene (ATDC) is overexpressed in pancreatic cancer and promotes tumor growth and metastasis. Our study reveals that increased ATDC levels protect cancer cells from reactive oxygen species (ROS) via stabilization of nuclear factor erythroid 2-related factor 2 (NRF2). Mechanistically, ATDC binds to Kelch-like ECH-associated protein 1 (KEAP1), the principal regulator of NRF2 degradation, and thereby prevents degradation of NRF2 resulting in activation of a NRF2-dependent transcriptional program, reduced intracellular ROS and enhanced chemoresistance. Our findings define a novel role of ATDC in regulating redox balance and chemotherapeutic resistance by modulating NRF2 activity.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/fisiopatología , Factores de Transcripción/metabolismo , Humanos , Unión Proteica , Neoplasias Pancreáticas
7.
Cancer Res ; 81(5): 1240-1251, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441311

RESUMEN

Leukemic relapse is believed to be driven by transformed hematopoietic stem cells (HSC) that harbor oncogenic mutations or have lost tumor suppressor function. Recent comprehensive sequencing studies have shown that mutations predicted to activate Ras signaling are highly prevalent in hematologic malignancies and, notably, in refractory and relapsed cases. To better understand what drives this clinical phenomenon, we expressed oncogenic NrasG12D within the hematopoietic system in mice and interrogated its effects on HSC survival. N-RasG12D conferred a survival benefit to HSCs and progenitors following metabolic and genotoxic stress. This effect was limited to HSCs and early progenitors and was independent of autophagy and cell proliferation. N-RasG12D-mediated HSC survival was not affected by inhibition of canonical Ras effectors such as MEK and PI3K. However, inhibition of the noncanonical Ras effector pathway protein kinase C (PKC) ameliorated the protective effects of N-RasG12D. Mechanistically, N-RasG12D lowered levels of reactive oxygen species (ROS), which correlated with reduced mitochondrial membrane potential and ATP levels. Inhibition of PKC restored the levels of ROS to that of control HSCs and abrogated the protective effects granted by N-RasG12D. Thus, N-RasG12D activation within HSCs promotes cell survival through the mitigation of ROS, and targeting this mechanism may represent a viable strategy to induce apoptosis during malignant transformation of HSCs. SIGNIFICANCE: Targeting oncogenic N-Ras-mediated reduction of ROS in hematopoietic stem cells through inhibition of the noncanonical Ras effector PKC may serve as a novel strategy for treatment of leukemia and other Ras-mutated cancers.


Asunto(s)
Apoptosis/fisiología , Genes ras/genética , Células Madre Hematopoyéticas/fisiología , Estrés Oxidativo/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagia/fisiología , Supervivencia Celular/genética , Células Cultivadas , Femenino , Fluorouracilo/efectos adversos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/efectos de la radiación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Radiación Ionizante , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
8.
Blood ; 136(26): 2975-2986, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33150381

RESUMEN

Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum-associated degradation (ERAD) governs the function of quiescent HSCs. The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyperproliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, we identify Ras homolog enriched in brain (Rheb), an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.


Asunto(s)
Proliferación Celular , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Madre Hematopoyéticas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Retículo Endoplásmico/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Cancer Res ; 80(23): 5155-5163, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32907837

RESUMEN

As genomic sequencing has become more widely available, the high prevalence of Ras pathway mutations in pediatric diseases has begun to emerge. Germline Ras-activating mutations have been known to contribute to cancer predisposition in a group of disorders known as the RASopathies, and now large pediatric sequencing studies have identified frequent somatic Ras pathway alterations across a diverse group of pediatric malignancies. These include glial brain tumors, relapsed high-risk neuroblastoma, embryonal rhabdomyosarcoma, acute myeloid leukemia, and relapsed acute lymphoblastic leukemia, and their prognostic impact is becoming increasingly better understood. Clinically, there has been success in targeting the Ras pathway in pediatric diseases, including the use of MEK inhibitors in plexiform neurofibromas associated with neurofibromatosis type 1 and the use of Ras pathway inhibitors in low-grade gliomas. Given the importance of this pathway in pediatric cancer, it is imperative that future studies strive to better understand the functional significance of these mutations, including their role in tumor growth and treatment resistance and how they can be better targeted to improve outcomes.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/metabolismo , Proteínas ras/metabolismo , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neurofibromatosis 1/tratamiento farmacológico , Neurofibromatosis 1/metabolismo , Transducción de Señal , Proteínas ras/genética
10.
Transl Pediatr ; 9(1): 43-50, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32154134

RESUMEN

BACKGROUND: Cancer remains the number one cause of disease-related mortality in children, and despite advances in the molecular understanding of leukemia and targeted therapies, refractory leukemia remains a leading cause of death. It therefore is essential to further define features, e.g., FLT3 alterations and KMT2A rearrangements, associated with inferior survival early to augment or alter therapeutic strategies to improve outcomes. METHODS: To gain insights into the genetic drivers predictive of aggressive clinical behavior among pediatric leukemia patients, we performed comprehensive integrative clinical sequencing (ICS), including paired tumor/normal DNA sequencing and RNA-seq, for pediatric patients who presented at our institution over a period of five years with acute lymphoblastic or myelogenous leukemia (ALL and AML; n=43) and high-risk clinical features (high white blood cell count, extramedullary disease, or refractory and/or relapsed disease). RESULTS: We found that RAS- and Ras-pathway aberrations, including N-RAS, NF1 and PTPN11, are frequent somatic mutations and, importantly, associated with decreased event free and overall survival (OS) (P=0.04, median event free survival 22.8 vs. 5.6 months; P=0.04, median OS 124 vs. 22.5 months). CONCLUSIONS: We thus propose that hyperactive Ras signaling confers inferior survival in high-risk pediatric acute leukemia and that Ras pathways should be molecularly characterized to inform clinical decision making and to identify patients for experimental clinical trials and RAS-targeted therapy.

11.
Nat Cell Biol ; 21(3): 328-337, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778220

RESUMEN

Over their lifetime, long-term haematopoietic stem cells (HSC) are exposed to a variety of stress conditions that they must endure. Many stresses, such as infection/inflammation, reactive oxygen species, nutritional deprivation and hypoxia, activate unfolded protein response signalling, which induces either adaptive changes to resolve the stress or apoptosis to clear the damaged cell. Whether unfolded-protein-response signalling plays any role in HSC regulation remains to be established. Here, we report that the adaptive signalling of the unfolded protein response, IRE1α-XBP1, protects HSCs from endoplasmic reticulum stress-induced apoptosis. IRE1α knockout leads to reduced reconstitution of HSCs. Furthermore, we show that oncogenic N-RasG12D activates IRE1α-XBP1, through MEK-GSK3ß, to promote HSC survival under endoplasmic reticulum stress. Inhibiting IRE1α-XBP1 abolished N-RasG12D-mediated survival under endoplasmic reticulum stress and diminished the competitive advantage of NrasG12D HSCs in transplant recipients. Our studies illuminate how the adaptive endoplasmic reticulum stress response is advantageous in sustaining self-renewal of HSCs and promoting pre-leukaemic clonal dominance.


Asunto(s)
Autorrenovación de las Células/genética , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Adaptación Fisiológica , Animales , Supervivencia Celular/genética , Endorribonucleasas/genética , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Lesiones Precancerosas , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Proteína 1 de Unión a la X-Box/genética
12.
Blood Adv ; 2(11): 1259-1271, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29866713

RESUMEN

Concurrent genetic lesions exist in a majority of patients with hematologic malignancies. Among these, somatic mutations that activate RAS oncogenes and inactivate the epigenetic modifier ten-eleven translocation 2 (TET2) frequently co-occur in human chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias, suggesting a cooperativity in malignant transformation. To test this, we applied a conditional murine model that endogenously expressed oncogenic NrasG12D and monoallelic loss of Tet2 and explored the collaborative role specifically within hematopoietic stem and progenitor cells (HSPCs) at disease initiation. We demonstrate that the 2 mutations collaborated to accelerate a transplantable CMML-like disease in vivo, with an overall shortened survival and increased disease penetrance compared with single mutants. At preleukemic stage, N-RasG12D and Tet2 haploinsufficiency together induced balanced hematopoietic stem cell (HSC) proliferation and enhanced competitiveness. NrasG12D/+/Tet2+/- HSCs displayed increased self-renewal in primary and secondary transplantations, with significantly higher reconstitution than single mutants. Strikingly, the 2 mutations together conferred long-term reconstitution and self-renewal potential to multipotent progenitors, a pool of cells that usually have limited self-renewal compared with HSCs. Moreover, HSPCs from NrasG12D/+/Tet2+/- mice displayed increased cytokine sensitivity in response to thrombopoietin. Therefore, our studies establish a novel tractable CMML model and provide insights into how dysregulated signaling pathways and epigenetic modifiers collaborate to modulate HSPC function and promote leukemogenesis.


Asunto(s)
Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas de Unión al GTP Monoméricas , Neoplasias Experimentales , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Células Madre Hematopoyéticas/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
13.
Cancer Res ; 75(23): 5155-66, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26471361

RESUMEN

Bladder cancer is a common and deadly malignancy but its treatment has advanced little due to poor understanding of the factors and pathways that promote disease. ATDC/TRIM29 is a highly expressed gene in several lethal tumor types, including bladder tumors, but its role as a pathogenic driver has not been established. Here we show that overexpression of ATDC in vivo is sufficient to drive both noninvasive and invasive bladder carcinoma development in transgenic mice. ATDC-driven bladder tumors were indistinguishable from human bladder cancers, which displayed similar gene expression signatures. Clinically, ATDC was highly expressed in bladder tumors in a manner associated with invasive growth behaviors. Mechanistically, ATDC exerted its oncogenic effects by suppressing miR-29 and subsequent upregulation of DNMT3A, leading to DNA methylation and silencing of the tumor suppressor PTEN. Taken together, our findings established a role for ATDC as a robust pathogenic driver of bladder cancer development, identified downstream effector pathways, and implicated ATDC as a candidate biomarker and therapeutic target.


Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/biosíntesis , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , MicroARNs/metabolismo , Invasividad Neoplásica , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Factores de Transcripción/biosíntesis , Transfección , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
14.
J Biol Chem ; 290(45): 27146-27157, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26381412

RESUMEN

Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348-588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Tolerancia a Radiación/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de la radiación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica/efectos de la radiación , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitinación
16.
Genes Dev ; 29(2): 171-83, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25593307

RESUMEN

The initiation of pancreatic ductal adenocarcinoma (PDA) is linked to activating mutations in KRAS. However, in PDA mouse models, expression of oncogenic mutant KRAS during development gives rise to tumors only after a prolonged latency or following induction of pancreatitis. Here we describe a novel mouse model expressing ataxia telangiectasia group D complementing gene (ATDC, also known as TRIM29 [tripartite motif 29]) that, in the presence of oncogenic KRAS, accelerates pancreatic intraepithelial neoplasia (PanIN) formation and the development of invasive and metastatic cancers. We found that ATDC up-regulates CD44 in mouse and human PanIN lesions via activation of ß-catenin signaling, leading to the induction of an epithelial-to-mesenchymal transition (EMT) phenotype characterized by expression of Zeb1 and Snail1. We show that ATDC is up-regulated by oncogenic Kras in a subset of PanIN cells that are capable of invading the surrounding stroma. These results delineate a novel molecular pathway for EMT in pancreatic tumorigenesis, showing that ATDC is a proximal regulator of EMT.


Asunto(s)
Carcinoma Ductal Pancreático/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Transgénicos , Invasividad Neoplásica/genética , Neoplasias Pancreáticas/enzimología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , beta Catenina/metabolismo
17.
Cancer Res ; 74(6): 1778-88, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24469230

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by therapeutic resistance for which the basis is poorly understood. Here, we report that the DNA and p53-binding protein ATDC/TRIM29, which is highly expressed in PDAC, plays a critical role in DNA damage signaling and radioresistance in pancreatic cancer cells. Ataxia-telangiectasia group D-associated gene (ATDC) mediated resistance to ionizing radiation in vitro and in vivo in mouse xenograft assays. ATDC was phosphorylated directly by MAPKAP kinase 2 (MK2) at Ser550 in an ATM-dependent manner. Phosphorylation at Ser-550 by MK2 was required for the radioprotective function of ATDC. Our results identify a DNA repair pathway leading from MK2 and ATM to ATDC, suggesting its candidacy as a therapeutic target to radiosensitize PDAC and improve the efficacy of DNA-damaging treatment.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas Dishevelled , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Pancreáticas/radioterapia , Fosfoproteínas/metabolismo , Fosforilación , Tolerancia a Radiación , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Res ; 66(3): 1775-82, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452238

RESUMEN

Myc proteins regulate cell growth and are oncogenic in many cancers. Although these proteins are validated molecular anticancer targets, new therapies aimed at modulating myc have yet to emerge. A benzodiazepine (Bz-423) that was discovered in efforts to find new drugs for lupus was found recently to have antiproliferative effects on Burkitt's lymphoma cells. We now show that the basis for the antiproliferative effects of Bz-423 is the rapid and specific depletion of c-myc protein, which is coupled to growth-suppressing effects on key regulators of proliferation and cell cycle progression. c-Myc is depleted as a result of signals coupled to Bz-423 binding its molecular target, the oligomycin sensitivity-conferring protein subunit of the mitochondrial F(1)F(o)-ATPase. Bz-423 inhibits F(1)F(o)-ATPase activity, blocking respiratory chain function and generating superoxide, which at growth-inhibiting concentrations triggers proteasomal degradation of c-myc. Bz-423-induced c-myc degradation is independent of glycogen synthase kinase but is substantially blocked by mutation of the phosphosensitive residue threonine 58, which when phosphorylated targets c-myc for ubiquitination and subsequent proteasomal degradation. Collectively, this work describes a new lead compound, with drug-like properties, which regulates c-myc by a novel molecular mechanism that may be therapeutically useful.


Asunto(s)
Linfocitos B/efectos de los fármacos , Benzodiazepinas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Poliaminas Biogénicas/metabolismo , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Proteínas de Ciclo Celular/biosíntesis , Procesos de Crecimiento Celular/efectos de los fármacos , Humanos , Activación de Linfocitos/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/inmunología , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...