Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113378, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37925640

RESUMEN

We developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The model simulates multiscale measures, including physiological firing rates, local field potentials (LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, mirror experimental findings. Physiological oscillations emerge spontaneously across frequency bands comparable to those recorded in vivo. We elucidate population-specific contributions to observed oscillation events and relate them to firing and presynaptic input patterns. The model offers a quantitative theoretical framework to integrate and interpret experimental data and predict its underlying cellular and circuit mechanisms.


Asunto(s)
Corteza Auditiva , Tálamo , Tálamo/fisiología , Electroencefalografía , Cuerpos Geniculados , Núcleos Talámicos , Neuronas/fisiología
2.
Cell Rep ; 42(6): 112574, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37300831

RESUMEN

Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.


Asunto(s)
Corteza Motora , Ratones , Animales , Corteza Motora/fisiología , Neuronas/fisiología , Tálamo/fisiología , Sinapsis/fisiología , Biofisica
3.
Front Comput Neurosci ; 16: 1017284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249482

RESUMEN

Artificial neural networks (ANNs) have been successfully trained to perform a wide range of sensory-motor behaviors. In contrast, the performance of spiking neuronal network (SNN) models trained to perform similar behaviors remains relatively suboptimal. In this work, we aimed to push the field of SNNs forward by exploring the potential of different learning mechanisms to achieve optimal performance. We trained SNNs to solve the CartPole reinforcement learning (RL) control problem using two learning mechanisms operating at different timescales: (1) spike-timing-dependent reinforcement learning (STDP-RL) and (2) evolutionary strategy (EVOL). Though the role of STDP-RL in biological systems is well established, several other mechanisms, though not fully understood, work in concert during learning in vivo. Recreating accurate models that capture the interaction of STDP-RL with these diverse learning mechanisms is extremely difficult. EVOL is an alternative method and has been successfully used in many studies to fit model neural responsiveness to electrophysiological recordings and, in some cases, for classification problems. One advantage of EVOL is that it may not need to capture all interacting components of synaptic plasticity and thus provides a better alternative to STDP-RL. Here, we compared the performance of each algorithm after training, which revealed EVOL as a powerful method for training SNNs to perform sensory-motor behaviors. Our modeling opens up new capabilities for SNNs in RL and could serve as a testbed for neurobiologists aiming to understand multi-timescale learning mechanisms and dynamics in neuronal circuits.

4.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35906065

RESUMEN

Electrophysiological oscillations in the brain have been shown to occur as multicycle events, with onset and offset dependent on behavioral and cognitive state. To provide a baseline for state-related and task-related events, we quantified oscillation features in resting-state recordings. We developed an open-source wavelet-based tool to detect and characterize such oscillation events (OEvents) and exemplify the use of this tool in both simulations and two invasively-recorded electrophysiology datasets: one from human, and one from nonhuman primate (NHP) auditory system. After removing incidentally occurring event-related potentials (ERPs), we used OEvents to quantify oscillation features. We identified ∼2 million oscillation events, classified within traditional frequency bands: δ, θ, α, ß, low γ, γ, and high γ. Oscillation events of 1-44 cycles could be identified in at least one frequency band 90% of the time in human and NHP recordings. Individual oscillation events were characterized by nonconstant frequency and amplitude. This result necessarily contrasts with prior studies which assumed frequency constancy, but is consistent with evidence from event-associated oscillations. We measured oscillation event duration, frequency span, and waveform shape. Oscillations tended to exhibit multiple cycles per event, verifiable by comparing filtered to unfiltered waveforms. In addition to the clear intraevent rhythmicity, there was also evidence of interevent rhythmicity within bands, demonstrated by finding that coefficient of variation of interval distributions and Fano factor (FF) measures differed significantly from a Poisson distribution assumption. Overall, our study provides an easy-to-use tool to study oscillation events at the single-trial level or in ongoing recordings, and demonstrates that rhythmic, multicycle oscillation events dominate auditory cortical dynamics.


Asunto(s)
Corteza Auditiva , Animales , Encéfalo , Potenciales Evocados , Humanos , Periodicidad , Primates
5.
PLoS One ; 17(5): e0265808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544518

RESUMEN

Recent models of spiking neuronal networks have been trained to perform behaviors in static environments using a variety of learning rules, with varying degrees of biological realism. Most of these models have not been tested in dynamic visual environments where models must make predictions on future states and adjust their behavior accordingly. The models using these learning rules are often treated as black boxes, with little analysis on circuit architectures and learning mechanisms supporting optimal performance. Here we developed visual/motor spiking neuronal network models and trained them to play a virtual racket-ball game using several reinforcement learning algorithms inspired by the dopaminergic reward system. We systematically investigated how different architectures and circuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We also developed a new biologically-inspired learning rule that significantly enhanced performance, while reducing training time. Our models included visual areas encoding game inputs and relaying the information to motor areas, which used this information to learn to move the racket to hit the ball. Neurons in the early visual area relayed information encoding object location and motion direction across the network. Neuronal association areas encoded spatial relationships between objects in the visual scene. Motor populations received inputs from visual and association areas representing the dorsal pathway. Two populations of motor neurons generated commands to move the racket up or down. Model-generated actions updated the environment and triggered reward or punishment signals that adjusted synaptic weights so that the models could learn which actions led to reward. Here we demonstrate that our biologically-plausible learning rules were effective in training spiking neuronal network models to solve problems in dynamic environments. We used our models to dissect the circuit architectures and learning rules most effective for learning. Our model shows that learning mechanisms involving different neural circuits produce similar performance in sensory-motor tasks. In biological networks, all learning mechanisms may complement one another, accelerating the learning capabilities of animals. Furthermore, this also highlights the resilience and redundancy in biological systems.


Asunto(s)
Corteza Motora , Corteza Visual , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Modelos Neurológicos , Neuronas/fisiología , Corteza Visual/fisiología
6.
Neuroimage ; 242: 118479, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34407440

RESUMEN

Motor cortical activity in the beta frequency range is one of the strongest and most studied movement-related neural signals. At the single trial level, beta band activity is often characterized by transient, high amplitude, bursting events rather than slowly modulating oscillations. The timing of these bursting events is tightly linked to behavior, suggesting a more dynamic functional role for beta activity than previously believed. However, the neural mechanisms underlying beta bursts in sensorimotor circuits are poorly understood. To address this, we here leverage and extend recent developments in high precision MEG for temporally resolved laminar analysis of burst activity, combined with a neocortical circuit model that simulates the biophysical generators of the electrical currents which drive beta bursts. This approach pinpoints the generation of beta bursts in human motor cortex to distinct excitatory synaptic inputs to deep and superficial cortical layers, which drive current flow in opposite directions. These laminar dynamics of beta bursts in motor cortex align with prior invasive animal recordings within the somatosensory cortex, and suggest a conserved mechanism for somatosensory and motor cortical beta bursts. More generally, we demonstrate the ability for uncovering the laminar dynamics of event-related neural signals in human non-invasive recordings. This provides important constraints to theories about the functional role of burst activity for movement control in health and disease, and crucial links between macro-scale phenomena measured in humans and micro-circuit activity recorded from animal models.


Asunto(s)
Ritmo beta/fisiología , Magnetoencefalografía/métodos , Corteza Motora/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento/fisiología , Desempeño Psicomotor , Adulto Joven
7.
J Neurophysiol ; 125(4): 1501-1516, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33689489

RESUMEN

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.


Asunto(s)
Dendritas/fisiología , Fenómenos Electrofisiológicos/fisiología , Modelos Teóricos , Neocórtex/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Células Piramidales/fisiología , Tractos Piramidales/fisiología , Animales , Impedancia Eléctrica , Humanos
8.
NPJ Schizophr ; 6(1): 25, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958782

RESUMEN

Treatment of schizophrenia has had limited success in treating core cognitive symptoms. The evidence of multi-gene involvement suggests that multi-target therapy may be needed. Meanwhile, the complexity of schizophrenia pathophysiology and psychopathology, coupled with the species-specificity of much of the symptomatology, places limits on analysis via animal models, in vitro assays, and patient assessment. Multiscale computer modeling complements these traditional modes of study. Using a hippocampal CA3 computer model with 1200 neurons, we examined the effects of alterations in NMDAR, HCN (Ih current), and GABAAR on information flow (measured with normalized transfer entropy), and in gamma activity in local field potential (LFP). We found that altering NMDARs, GABAAR, Ih, individually or in combination, modified information flow in an inverted-U shape manner, with information flow reduced at low and high levels of these parameters. Theta-gamma phase-amplitude coupling also had an inverted-U shape relationship with NMDAR augmentation. The strong information flow was associated with an intermediate level of synchrony, seen as an intermediate level of gamma activity in the LFP, and an intermediate level of pyramidal cell excitability. Our results are consistent with the idea that overly low or high gamma power is associated with pathological information flow and information processing. These data suggest the need for careful titration of schizophrenia pharmacotherapy to avoid extremes that alter information flow in different ways. These results also identify gamma power as a potential biomarker for monitoring pathology and multi-target pharmacotherapy.

9.
Elife ; 92020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31967544

RESUMEN

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.


Neurons carry information in the form of electrical signals. Each of these signals is too weak to detect on its own. But the combined signals from large groups of neurons can be detected using techniques called EEG and MEG. Sensors on or near the scalp detect changes in the electrical activity of groups of neurons from one millisecond to the next. These recordings can also reveal changes in brain activity due to disease. But how do EEG/MEG signals relate to the activity of neural circuits? While neuroscientists can rarely record electrical activity from inside the human brain, it is much easier to do so in other animals. Computer models can then compare these recordings from animals to the signals in human EEG/MEG to infer how the activity of neural circuits is changing. But building and interpreting these models requires advanced skills in mathematics and programming, which not all researchers possess. Neymotin et al. have therefore developed a user-friendly software platform that can help translate human EEG/MEG recordings into circuit-level activity. Known as the Human Neocortical Neurosolver, or HNN for short, the open-source tool enables users to develop and test hypotheses on the neural origin of EEG/MEG signals. The model simulates the electrical activity of cells in the outer layers of the human brain, the neocortex. By feeding human EEG/MEG data into the model, researchers can predict patterns of circuit-level activity that might have given rise to the EEG/MEG data. The HNN software includes tutorials and example datasets for commonly measured signals, including brain rhythms. It is free to use and can be installed on all major computer platforms or run online. HNN will help researchers and clinicians who wish to identify the neural origins of EEG/MEG signals in the healthy or diseased brain. Likewise, it will be useful to researchers studying brain activity in animals, who want to know how their findings might relate to human EEG/MEG signals. As HNN is suitable for users without training in computational neuroscience, it offers an accessible tool for discoveries in translational neuroscience.


Asunto(s)
Electroencefalografía/métodos , Magnetoencefalografía/métodos , Neocórtex/fisiología , Programas Informáticos , Algoritmos , Potenciales Evocados , Humanos , Modelos Neurológicos , Interfaz Usuario-Computador
10.
PEARC20 (2020) ; 2020: 505-509, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35098264

RESUMEN

Biophysically detailed modeling provides an unmatched method to integrate data from many disparate experimental studies, and manipulate and explore with high precision the resultin brain circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating over 10,000 biophysically detailed neurons and 30 million synaptic connections. Optimization and evaluation of the cortical model parameters and responses was achieved via parameter exploration using grid search parameter sweeps and evolutionary algorithms. This involves running tens of thousands of simulations requiring significant computational resources. This paper describes our experience in setting up and using Google Compute Platform (GCP) with Slurm to run these large-scale simulations. We describe the best practices and solutions to the issues that arose during the process, and present preliminary results from running simulations on GCP.

11.
Alzheimers Dement ; 16(2): 251-261, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31668966

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is linked to neuronal calcium dyshomeostasis, which is associated with network hyperexcitability. Decreased expression of the calcium-binding protein cal- bindin-D28K (CB) might be a susceptibility factor for AD. The subiculum is affected early in AD, for unknown reasons. METHODS: In AD, CB knock-out and control mice fluorescence Ca2+ imaging combined with patch clamp were used to characterize Ca2+ dynamics, resting Ca2+ , and Ca2+ -buffering capacity in subicular neurons. CB expression levels in wild-type and AD mice were also analyzed. RESULTS: The subiculum and dentate gyrus of wild-type mice showed age-related decline in CB expression not observed in AD mice. Resting Ca2+ and Ca2+ -buffering capacity was increased in aged AD mice subicular dendrites. Modeling suggests that AD calcium changes can be explained by alterations of Ca2+ extrusion pumps rather than by buffers. DISCUSSION: Overall, abnormal Ca2+ homeostasis in AD has an age dependency that comprises multiple mechanisms, including compensatory processes.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Calcio/metabolismo , Dendritas , Hipocampo/metabolismo , Homeostasis/fisiología , Factores de Edad , Envejecimiento , Enfermedad de Alzheimer/patología , Animales , Giro Dentado , Electrofisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
12.
Elife ; 82019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31025934

RESUMEN

Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Biología Computacional/métodos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Simulación por Computador , Modelos Neurológicos
13.
J Neurosci Methods ; 275: 1-9, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27746231

RESUMEN

BACKGROUND: Correlated neuronal activity in the brain is hypothesized to contribute to information representation, and is important for gauging brain dynamics in health and disease. Due to high dimensional neural datasets, it is difficult to study temporal variations in correlation structure. NEW METHOD: We developed a multiscale method, Population Coordination (PCo), to assess neural population structure in multiunit single neuron ensemble and multi-site local field potential (LFP) recordings. PCo utilizes population correlation (PCorr) vectors, consisting of pair-wise correlations between neural elements. The PCo matrix contains the correlations between all PCorr vectors occurring at different times. RESULTS: We used PCo to interpret dynamics of two electrophysiological datasets: multisite LFP and single unit ensemble. In the LFP dataset from an animal model of medial temporal lobe epilepsy, PCo isolated anomalous brain states, where particular brain regions broke off from the rest of the brain's activity. In a dataset of rat hippocampal single-unit recordings, PCo enabled visualizing neuronal ensemble correlation structure changes associated with changes of animal environment (place-cell remapping). COMPARISON WITH EXISTING METHOD(S): PCo allows directly visualizing high dimensional data. Dimensional reduction techniques could also be used to produce dynamical snippets that could be examined for recurrence. PCo allows intuitive, visual assessment of temporal recurrence in correlation structure directly in the high dimensionality dataset, allowing for immediate assessment of relevant dynamics at a single site. CONCLUSIONS: PCo can be used to investigate how neural correlation structure occurring at multiple temporal and spatial scales reflect underlying dynamical recurrence without intermediate reduction of dimensionality.


Asunto(s)
Neuronas/fisiología , Periodicidad , Procesamiento de Señales Asistido por Computador , Potenciales de Acción , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Electrocorticografía , Epilepsia del Lóbulo Temporal/fisiopatología , Conducta Exploratoria/fisiología , Ácido Iboténico , Masculino , Ratones Endogámicos C57BL , Microelectrodos , Ratas Long-Evans
14.
J Neurophysiol ; 117(1): 148-162, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760819

RESUMEN

Corticospinal neurons (SPI), thick-tufted pyramidal neurons in motor cortex layer 5B that project caudally via the medullary pyramids, display distinct class-specific electrophysiological properties in vitro: strong sag with hyperpolarization, lack of adaptation, and a nearly linear frequency-current (F-I) relationship. We used our electrophysiological data to produce a pair of large archives of SPI neuron computer models in two model classes: 1) detailed models with full reconstruction; and 2) simplified models with six compartments. We used a PRAXIS and an evolutionary multiobjective optimization (EMO) in sequence to determine ion channel conductances. EMO selected good models from each of the two model classes to form the two model archives. Archived models showed tradeoffs across fitness functions. For example, parameters that produced excellent F-I fit produced a less-optimal fit for interspike voltage trajectory. Because of these tradeoffs, there was no single best model but rather models that would be best for particular usages for either single neuron or network explorations. Further exploration of exemplar models with strong F-I fit demonstrated that both the detailed and simple models produced excellent matches to the experimental data. Although dendritic ion identities and densities cannot yet be fully determined experimentally, we explored the consequences of a demonstrated proximal to distal density gradient of Ih, demonstrating that this would lead to a gradient of resonance properties with increased resonant frequencies more distally. We suggest that this dynamical feature could serve to make the cell particularly responsive to major frequency bands that differ by cortical layer. NEW & NOTEWORTHY: We developed models of motor cortex corticospinal neurons that replicate in vitro dynamics, including hyperpolarization-induced sag and realistic firing patterns. Models demonstrated resonance in response to synaptic stimulation, with resonance frequency increasing in apical dendrites with increasing distance from soma, matching the increasing oscillation frequencies spanning deep to superficial cortical layers. This gradient may enable specific corticospinal neuron dendrites to entrain to relevant oscillations in different cortical layers, contributing to appropriate motor output commands.


Asunto(s)
Potenciales de Acción/fisiología , Simulación por Computador , Modelos Neurológicos , Neuronas/fisiología , Dinámicas no Lineales , Tractos Piramidales/citología , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Neurotransmisores/farmacología , Técnicas de Placa-Clamp
15.
Nat Neurosci ; 19(12): 1707-1717, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27618311

RESUMEN

Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.


Asunto(s)
Atención/fisiología , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Animales , Electroencefalografía/métodos , Femenino , Macaca mulatta , Periodicidad , Estimulación Luminosa/métodos
16.
Front Pharmacol ; 7: 157, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27378922

RESUMEN

A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.

17.
Front Neurosci ; 10: 28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26903796

RESUMEN

Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors.

18.
Artículo en Inglés | MEDLINE | ID: mdl-28983321

RESUMEN

Dystonia is a movement disorder that produces involuntary muscle contractions. Current pharmacological treatments are of limited efficacy. Dystonia, like epilepsy is a disorder involving excessive activty of motor areas including motor cortex and several causal gene mutations have been identified. In order to evaluate potential novel agents for multitarget therapy for dystonia, we have developed a computer model of cortex that includes some of the complex array of molecular interactions that, along with membrane ion channels, control cell excitability.

19.
Front Neurorobot ; 9: 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635598

RESUMEN

Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.

20.
Hippocampus ; 25(11): 1336-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25864919

RESUMEN

Temporal lobe epilepsy (TLE) is a common type of epilepsy with hippocampus as the usual site of origin. The CA3 subfield of hippocampus is reported to have a low epileptic threshold and hence initiates the disorder in patients with TLE. This study computationally investigates how impaired dendritic inhibition of pyramidal cells in the vulnerable CA3 subfield leads to generation of epileptic activity. A model of CA3 subfield consisting of 800 pyramidal cells, 200 basket cells (BC) and 200 Oriens-Lacunosum Moleculare (O-LM) interneurons was used. The dendritic inhibition provided by O-LM interneurons is reported to be selectively impaired in some TLEs. A step-wise approach is taken to investigate how alterations in network connectivity lead to generation of epileptic patterns. Initially, dendritic inhibition alone was reduced, followed by an increase in the external inputs received at the distal dendrites of pyramidal cells, and finally additional changes were made at the synapses between all neurons in the network. In the first case, when the dendritic inhibition of pyramidal cells alone was reduced, the local field potential activity changed from a theta-modulated gamma pattern to a prominently gamma frequency pattern. In the second case, in addition to this reduction of dendritic inhibition, with a simultaneous large increase in the external excitatory inputs received by pyramidal cells, the basket cells entered a state of depolarization block, causing the network to generate a typical ictal activity pattern. In the third case, when the dendritic inhibition onto the pyramidal cells was reduced and changes were simultaneously made in synaptic connectivity between all neurons in the network, the basket cells were again observed to enter depolarization block. In the third case, impairment of dendritic inhibition required to generate an ictal activity pattern was lesser than the two previous cases. Moreover, the ictal like activity began earlier in the third case. Hence, our study suggests that greater synaptic plasticity occurring in the whole network due to increase in reception of external excitatory inputs (due to impaired dendritic inhibition) makes the network more susceptible to generation of epileptic activity.


Asunto(s)
Región CA3 Hipocampal/fisiología , Dendritas/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Inhibición Neural/fisiología , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...