Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Adv Mater ; : e2401476, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602334

RESUMEN

While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI2) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI2 clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI2 clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI2 film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI2 and the organic salt. Surprisingly, the oversized residual PbI2 clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI2. Leveraging effective PbI2 management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668168

RESUMEN

Solar cells have been developed as a highly efficient source of alternative energy, collecting photons from sunlight and turning them into electricity. On the other hand, ultraviolet (UV) radiation has a substantial impact on solar cells by damaging their active layers and, as a result, lowering their efficiency. Potential solutions include the blocking of UV light (which can reduce the power output of solar cells) or converting UV photons into visible light using down-conversion optical materials. In this work, we propose a novel hydrophobic coating based on a polydimethylsiloxane (PDMS) layer with embedded red emitting Y2O3:Eu3+ (quantum yield = 78.3%) particles for UV radiation screening and conversion purposes. The favorable features of the PDMS-Y2O3:Eu3+ coating were examined using commercially available polycrystalline silicon solar cells, resulting in a notable increase in the power conversion efficiency (PCE) by ~9.23%. The chemical and UV stability of the developed coatings were assessed by exposing them to various chemical conditions and UV irradiation. It was found that the developed coating can endure tough environmental conditions, making it potentially useful as a UV-protective, water-repellent, and efficiency-enhancing coating for solar cells.

3.
Nat Med ; 29(12): 3044-3049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973948

RESUMEN

Artificial intelligence (AI) has the potential to improve breast cancer screening; however, prospective evidence of the safe implementation of AI into real clinical practice is limited. A commercially available AI system was implemented as an additional reader to standard double reading to flag cases for further arbitration review among screened women. Performance was assessed prospectively in three phases: a single-center pilot rollout, a wider multicenter pilot rollout and a full live rollout. The results showed that, compared to double reading, implementing the AI-assisted additional-reader process could achieve 0.7-1.6 additional cancer detection per 1,000 cases, with 0.16-0.30% additional recalls, 0-0.23% unnecessary recalls and a 0.1-1.9% increase in positive predictive value (PPV) after 7-11% additional human reads of AI-flagged cases (equating to 4-6% additional overall reading workload). The majority of cancerous cases detected by the AI-assisted additional-reader process were invasive (83.3%) and small-sized (≤10 mm, 47.0%). This evaluation suggests that using AI as an additional reader can improve the early detection of breast cancer with relevant prognostic features, with minimal to no unnecessary recalls. Although the AI-assisted additional-reader workflow requires additional reads, the higher PPV suggests that it can increase screening effectiveness.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Inteligencia Artificial , Neoplasias de la Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Mamografía/métodos , Variaciones Dependientes del Observador , Estudios Prospectivos , Estudios Retrospectivos
4.
ACS Omega ; 8(23): 21212-21222, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323420

RESUMEN

With a power conversion efficiency (PCE) of more than 25%, perovskite solar cells (PSCs) have shown an immense potential application for solar energy conversion. Owing to lower manufacturing costs and facile processibility via printing techniques, PSCs can easily be scaled up to an industrial scale. The device performance of printed PSCs has been improving steadily with the development and optimization of the printing process for the device functional layers. Various kinds of SnO2 nanoparticle (NP) dispersion solutions including commercial ones are used to print the electron transport layer (ETL) of printed PSCs, and high processing temperatures are often required to obtain ETLs with optimum quality. This, however, limits the application of SnO2 ETLs in printed and flexible PSCs. In this work, the use of an alternative SnO2 dispersion solution based on SnO2 quantum dots (QDs) to fabricate ETLs of printed PSCs on flexible substrates is reported. A comparative analysis of the performance and properties of the obtained devices with the devices fabricated employing ETLs made with a commercial SnO2 NP dispersion solution is carried out. The ETLs made with SnO2 QDs are shown to improve the performance of devices by ∼11% on average compared to the ETLs made with SnO2 NPs. It is found that employing SnO2 QDs can reduce trap states in the perovskite layer and improve charge extraction in devices.

5.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37370680

RESUMEN

Invasiveness status, histological grade, lymph node stage, and tumour size are important prognostic factors for breast cancer survival. This evaluation aims to compare these features for cancers detected by AI and human readers using digital mammography. Women diagnosed with breast cancer between 2009 and 2019 from three UK double-reading sites were included in this retrospective cohort evaluation. Differences in prognostic features of cancers detected by AI and the first human reader (R1) were assessed using chi-square tests, with significance at p < 0.05. From 1718 screen-detected cancers (SDCs) and 293 interval cancers (ICs), AI flagged 85.9% and 31.7%, respectively. R1 detected 90.8% of SDCs and 7.2% of ICs. Of the screen-detected cancers detected by the AI, 82.5% had an invasive component, compared to 81.1% for R1 (p-0.374). For the ICs, this was 91.5% and 93.8% for AI and R1, respectively (p = 0.829). For the invasive tumours, no differences were found for histological grade, tumour size, or lymph node stage. The AI detected more ICs. In summary, no differences in prognostic factors were found comparing SDC and ICs identified by AI or human readers. These findings support a potential role for AI in the double-reading workflow.

6.
BMC Cancer ; 23(1): 460, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208717

RESUMEN

BACKGROUND: Double reading (DR) in screening mammography increases cancer detection and lowers recall rates, but has sustainability challenges due to workforce shortages. Artificial intelligence (AI) as an independent reader (IR) in DR may provide a cost-effective solution with the potential to improve screening performance. Evidence for AI to generalise across different patient populations, screening programmes and equipment vendors, however, is still lacking. METHODS: This retrospective study simulated DR with AI as an IR, using data representative of real-world deployments (275,900 cases, 177,882 participants) from four mammography equipment vendors, seven screening sites, and two countries. Non-inferiority and superiority were assessed for relevant screening metrics. RESULTS: DR with AI, compared with human DR, showed at least non-inferior recall rate, cancer detection rate, sensitivity, specificity and positive predictive value (PPV) for each mammography vendor and site, and superior recall rate, specificity, and PPV for some. The simulation indicates that using AI would have increased arbitration rate (3.3% to 12.3%), but could have reduced human workload by 30.0% to 44.8%. CONCLUSIONS: AI has potential as an IR in the DR workflow across different screening programmes, mammography equipment and geographies, substantially reducing human reader workload while maintaining or improving standard of care. TRIAL REGISTRATION: ISRCTN18056078 (20/03/2019; retrospectively registered).


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Mamografía , Inteligencia Artificial , Estudios Retrospectivos , Detección Precoz del Cáncer , Tamizaje Masivo
7.
J Breast Imaging ; 5(3): 267-276, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38416889

RESUMEN

OBJECTIVE: To evaluate the effectiveness of a new strategy for using artificial intelligence (AI) as supporting reader for the detection of breast cancer in mammography-based double reading screening practice. METHODS: Large-scale multi-site, multi-vendor data were used to retrospectively evaluate a new paradigm of AI-supported reading. Here, the AI served as the second reader only if it agrees with the recall/no-recall decision of the first human reader. Otherwise, a second human reader made an assessment followed by the standard clinical workflow. The data included 280 594 cases from 180 542 female participants screened for breast cancer at seven screening sites in two countries and using equipment from four hardware vendors. The statistical analysis included non-inferiority and superiority testing of cancer screening performance and evaluation of the reduction in workload, measured as arbitration rate and number of cases requiring second human reading. RESULTS: Artificial intelligence as a supporting reader was found to be superior or noninferior on all screening metrics compared with human double reading while reducing the number of cases requiring second human reading by up to 87% (245 395/280 594). Compared with AI as an independent reader, the number of cases referred to arbitration was reduced from 13% (35 199/280 594) to 2% (5056/280 594). CONCLUSION: The simulation indicates that the proposed workflow retains screening performance of human double reading while substantially reducing the workload. Further research should study the impact on the second human reader because they would only assess cases in which the AI prediction and first human reader disagree.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Femenino , Humanos , Carga de Trabajo , Estudios Retrospectivos , Flujo de Trabajo , Neoplasias de la Mama/diagnóstico , Mamografía
8.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957043

RESUMEN

Flexible and printed perovskite solar cells (PSCs) fabricated on lightweight plastic substrates have many excellent potential applications in emerging new technologies including wearable and portable electronics, the internet of things, smart buildings, etc. To fabricate flexible and printed PSCs, all of the functional layers of devices should be processed at low temperatures. Tin oxide is one of the best metal oxide materials to employ as the electron transport layer (ETL) in PSCs. Herein, the synthesis and application of SnO2 quantum dots (QDs) to prepare the ETL of flexible and printed PSCs are demonstrated. SnO2 QDs are synthesized via a solvothermal method and processed to obtain aqueous and printable ETL ink solutions with different QD concentrations. PSCs are fabricated using a slot-die coating method on flexible plastic substrates. The solar cell performance and spectral response of the obtained devices are characterized using a solar simulator and an external quantum efficiency measurement system. The ETLs prepared using 2 wt% SnO2 QD inks are found to produce devices with a high average power conversion efficiency (PCE) along with a 10% PCE for a champion device. The results obtained in this work provide the research community with a method to prepare fully solution-processed SnO2 QD-based inks that are suitable for the deposition of SnO2 ETLs for flexible and printed PSCs.

9.
Nanomaterials (Basel) ; 12(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630907

RESUMEN

Tin(IV) oxide (SnO2) nanostructures, which possess larger surface areas for transporting electron carriers, have been used as an electron transport layer (ETL) in perovskite solar cells (PSCs). However, the reported power conversion efficiencies (PCEs) of this type of PSCs show a large variation. One of the possible reasons for this phenomenon is the low reproducibility of SnO2 nanostructures if they are prepared by different research groups using various growth methods. This work focuses on the morphological study of SnO2 nanostructures grown by a solvothermal method. The growth parameters including growth pressure, substrate orientation, DI water-to-ethanol ratios, types of seed layer, amount of acetic acid, and growth time have been systematically varied. The SnO2 nanomorphology exhibits a different degree of sensitivity and trends towards each growth factor. A surface treatment is also required for solvothermally grown SnO2 nanomaterials for improving photovoltaic performance of PSCs. The obtained results in this work provide the research community with an insight into the general trend of morphological changes in SnO2 nanostructures influenced by different solvothermal growth parameters. This information can guide the researchers to prepare more reproducible solvothermally grown SnO2 nanomaterials for future application in devices.

10.
Light Sci Appl ; 10(1): 239, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857729

RESUMEN

The benchmark tin oxide (SnO2) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO2 quantum dots (QDs) via a facile rapid room temperature synthesis. Importantly, the ligand-tailored SnO2 QDs ETL with multi-functional terminal groups in situ refines the buried interfaces with both the perovskite and transparent electrode via enhanced interface binding and perovskite passivation. These novel ETLs induce synergistic effects of physical and chemical interfacial modulation and preferred perovskite crystallization-directing, delivering reduced interface defects, suppressed non-radiative recombination and elongated charge carrier lifetime. Power conversion efficiency (PCE) of 23.02% (0.04 cm2) and 21.6% (0.98 cm2, VOC loss: 0.336 V) have been achieved for the blade-coated PSCs (1.54 eV Eg) with our new ETLs, representing a record for SnO2 based blade-coated PSCs. Moreover, a substantially enhanced PCE (VOC) from 20.4% (1.15 V) to 22.8% (1.24 V, 90 mV higher VOC, 0.04 cm2 device) in the blade-coated 1.61 eV PSCs system, via replacing the benchmark commercial colloidal SnO2 with our new ETLs.

11.
Sci Rep ; 11(1): 19287, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588481

RESUMEN

Investigation of the physical properties of carbon nanowall (CNW) films is carried out in correlation with the growth time. The structural, electronic, optical and electrical properties of CNW films are investigated using electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, UV-Vis spectroscopy, Hall Effect measurement system, Four Point Probing system, and thermoelectric measurements. Shorter growth time results in thinner CNW films with a densely spaced labyrinth structure, while a longer growth time results in thicker CNW films with a petal structure. These changes in morphology further lead to changes in the structural, optical, and electrical properties of the CNW.

12.
Nanomaterials (Basel) ; 10(9)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842700

RESUMEN

Bi2Se3 possesses a two-dimensional layered rhombohedral crystal structure, where the quintuple layers (QLs) are covalently bonded within the layers but weakly held together by van der Waals forces between the adjacent QLs. It is also pointed out that Bi2Se3 is a topological insulator, making it a promising candidate for a wide range of electronic and optoelectronic applications. In this study, we investigate the growth of high-quality Bi2Se3 thin films on mica by the molecular beam epitaxy technique. The films exhibited a layered structure and highly c-axis-preferred growth orientation with an XRD rocking curve full-width at half-maximum (FWHM) of 0.088°, clearly demonstrating excellent crystallinity for the Bi2Se3 deposited on the mica substrate. The growth mechanism was studied by using an interface model associated with the coincidence site lattice unit (CSLU) developed for van der Waals epitaxies. This high (001) texture favors electron transport in the material. Hall measurements revealed a mobility of 726 cm2/(Vs) at room temperature and up to 1469 cm2/(Vs) at 12 K. The results illustrate excellent electron mobility arising from the superior crystallinity of the films with significant implications for applications in conducting electrodes in optoelectronic devices on flexible substrates.

13.
Nanomaterials (Basel) ; 10(2)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050417

RESUMEN

Perovskite solar cells (PSCs) with a standard sandwich structure suffer from optical transmission losses due to the substrate and its active layers. Developing strategies for compensating for the losses in light harvesting is of significant importance to achieving a further enhancement in device efficiencies. In this work, the down-conversion effect of carbon quantum dots (CQDs) was employed to convert the UV fraction of the incident light into visible light. For this, thin films of poly(methyl methacrylate) with embedded carbon quantum dots (CQD@PMMA) were deposited on the illumination side of PSCs. Analysis of the device performances before and after application of CQD@PMMA photoactive functional film on PSCs revealed that the devices with the coating showed an improved photocurrent and fill factor, resulting in higher device efficiency.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32093143

RESUMEN

Labels and declarations are one of the tools of environmental management aimed at improving human behavior with regard to the environment. The development process of environmental labels and declarations has been strongly recommended to include participatory consultation with users. Research studies on participatory design of environmentally friendly messages, however, have never been seen. The purpose of this study was to examine participatory environmentally friendly message design with consideration for the effects of message characteristics and user factors. Forty Hong Kong Chinese people adopted a participatory draw-and-tell approach by drawing 26 environmentally friendly messages related to eco-products, energy conservation, and recycling and waste management, and then verbally described their design drawings. The results showed that environmentally friendly messages which were familiar, concrete, easy to visualize, and contained clear context were favored by users, and users with high object imagery preference benefited most from the participatory design through the draw-and-tell approach. This study fills the gap in the literature about participatory design in environmental labels and declarations which are used for promoting eco-friendly behavior in daily life. The findings should help facilitate the participatory development process of environmentally friendly messages for conveying pro-environmental actions.


Asunto(s)
Comunicación , Conservación de los Recursos Naturales , Reciclaje , Administración de Residuos , Conductas Relacionadas con la Salud , Hong Kong , Humanos
15.
Adv Mater ; 30(44): e1804402, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30277609

RESUMEN

A cryogenic process is introduced to control the crystallization of perovskite layers, eliminating the need for the use of environmentally harmful antisolvents. This process enables decoupling of the nucleation and the crystallization phases by inhibiting chemical reactions in as-cast precursor films rapidly cooled down by immersion in liquid nitrogen. The cooling is followed by blow-drying with nitrogen gas, which induces uniform precipitation of precursors due to the supersaturation of precursors in the residual solvents at very low temperature, while at the same time enhancing the evaporation of the residual solvents and preventing the ordered precursors/perovskite from redissolving into the residual solvents. Using the proposed techniques, the crystallization process can be initiated after the formation of a uniform precursor seed layer. The process is generally applicable to improve the performance of solar cells using perovskite films with different compositions, as demonstrated on three different types of mixed halide perovskites. A champion power conversion efficiency (PCE) of 21.4% with open-circuit voltage (VOC ) = 1.14 V, short-circuit current density ( JSC ) = 23.5 mA cm-2 , and fill factor (FF) = 0.80 is achieved using the proposed cryogenic process.

16.
Liver Int ; 38(11): 1911-1919, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29981176

RESUMEN

BACKGROUND: To study the epidemiology of chronic hepatitis C virus infection in Hong Kong and to estimate the service gap for achieving the WHO hepatitis elimination targets of attaining a diagnosis rate of 90%, treatment rate of 80% and 65% reduction in mortality rate by 2030. METHODS: From January 2005 to March 2017, patients who were tested positive for anti-HCV were retrospectively retrieved from all public hospitals in Hong Kong. The epidemiological data of 15 participating hospitals were analysed. RESULTS: A total of 11 309 anti-HCV+ patients were identified and the estimated diagnosis rate was 50.9%. Our HCV-infected patients were ageing (median age 59). The all-cause mortality rate increased from 26.2 to 54.8 per 1000 person-years over the last decade. Our estimated treatment rate was 12.4%. Among the treated patients, 93.6% had received pegylated interferon/ribavirin (Peg-IFN/RBV) but only 10.8% had received interferon-free direct-acting antivirals (DAAs). In a cohort of 1533 patients, 39% already had advanced liver fibrosis or cirrhosis. The sustained virological response rate for Peg-IFN/RBV and DAAs were 74.8% and 97.2% respectively. However, more than 70% of patients were not subjected to interferon treatment for various reasons. Patients who achieved SVR were associated with a significantly lower risk of HCC (4.7% vs 9.6%, P = 0.005) and death (1.7% vs 23.8%, P < 0.001). CONCLUSION: Our diagnosis rate, treatment rate and mortality rate reduction were still low, particularly the Peg-IFN outcomes, making it difficult to meet the WHO hepatitis elimination targets. A more generalized use of DAAs is urgently needed to improve the situation.


Asunto(s)
Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/epidemiología , Mortalidad/tendencias , Respuesta Virológica Sostenida , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/epidemiología , Femenino , Genotipo , Hepacivirus/genética , Hong Kong/epidemiología , Humanos , Interferón-alfa/uso terapéutico , Cirrosis Hepática/epidemiología , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Ribavirina/uso terapéutico
17.
Appl Ergon ; 70: 18-25, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29866309

RESUMEN

This study examined color-concept associations among designers and non-designers with commonly used warning and operation concepts. This study required 199 designers and 175 non-designers to indicate their choice among nine colors to associate with each of the 38 concepts in a color-concept table. The results showed that the designers and non-designers had the same color associations and similar strengths of stereotypes for 17 concepts. The strongest color-concept stereotypes for both groups were red-danger, red-fire, and red-hot. However, the designers and non-designers had different color associations for the concepts of escape (green, red), increase (green, red), potential hazard (red, orange), fatal (black, red), and normal (white, green), while the strengths of the 16 remaining associations for both groups were not at equivalent levels. These findings provide ergonomists and design practitioners with a better understanding of population stereotypes for color coding, and consequently to effectively use colors in their user-centered designs.


Asunto(s)
Conducta de Elección , Color , Seguridad , Percepción de Color , Femenino , Humanos , Masculino , Semántica , Conducta Estereotipada , Adulto Joven
18.
ACS Appl Mater Interfaces ; 10(1): 371-380, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29094597

RESUMEN

In this study, detailed investigations of low-frequency noise (LFN) characteristics of hybrid chemical vapor deposition (HCVD)- and solution-grown CH3NH3PbI3 (MAPI) solar cells are reported. It has been shown that LFN is a ubiquitous phenomenon observed in all semiconductor devices. It is the smallest signal that can be measured from the device; hence, systematic characterization of the LFN properties can be utilized as a highly sensitive nondestructive tool for the characterization of material defects in the device. It has been demonstrated that the noise power spectral densities of the devices are critically dependent on the parameters of the fabrication process, including the growth ambient of the perovskite layer and the incorporation of the mesoscopic structures in the devices. Our experimental results indicated that the LFN arises from a thermally activated trapping and detrapping process, resulting in the corresponding fluctuations in the conductance of the device. The results show that the presence of oxygen in the growth ambient of the HCVD process and the inclusion of an mp-TiO2 layer in the device structure are two important factors contributing to the substantial reduction in the density of the localized states in the MAPI devices. Furthermore, the lifetimes of the MAPI perovskite-based solar cells are strongly dependent on the material defect concentration. The degradation process is substantially more rapid for the devices with higher initial defect density compared to the devices prepared under optimized conditions and structure that exhibit substantially lower initial trap density.

19.
Appl Ergon ; 58: 167-175, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27633210

RESUMEN

This study examined the benefits of pharmaceutical pictograms for improving comprehension of medication information for older people. Fifty Hong Kong Chinese older people completed a medical information comprehension task for five drugs. Participants in the control group were presented with text labels while those in the experimental group were given the text labels plus supplementary pharmaceutical pictograms, and then all reported their understanding of the medication information conveyed. Lower educated older people had poorer understanding of medication information. The addition of pharmaceutical pictograms significantly improved the comprehension of medication information for older people. The majority of older people tested with pictograms favored adding pictograms to text and thought the pictograms were useful for conveying medical information rather than using written text alone. The findings suggested that pharmaceutical and health care professionals should include pharmaceutical pictograms on labels to better convey instructions on medication to older people.


Asunto(s)
Comprensión , Etiquetado de Medicamentos , Comunicación en Salud/métodos , Educación del Paciente como Asunto/métodos , Anciano , Anciano de 80 o más Años , Escolaridad , Femenino , Alfabetización en Salud , Hong Kong , Humanos , Masculino , Semántica
20.
ACS Appl Mater Interfaces ; 8(48): 32805-32814, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934172

RESUMEN

Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...