Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Stem Cell Res ; 76: 103374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458031

RESUMEN

The NR2F2 gene encodes the transcription factor COUP-TFII, which is upregulated in embryonic mesoderm. Heterozygous variants in NR2F2 cause a spectrum of congenital anomalies including cardiac and gonadal phenotypes. We generated heterozygous (MCRIi030-A-1) and homozygous (MCRIi030-A-2) NR2F2-knockout induced pluripotent stem cell (iPSC) lines from human fibroblasts using a one-step protocol for CRISPR/Cas9 gene-editing and episomal-based reprogramming. Both iPSC lines exhibited a normal karyotype, typical pluripotent cell morphology, pluripotency marker expression, and the capacity to differentiate into the three embryonic germ layers. These lines will allow us to explore the role of NR2F2 during development and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Corazón , Heterocigoto , Homocigoto , Fenotipo , Sistemas CRISPR-Cas/genética , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo
2.
Protein Sci ; 33(3): e4904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358126

RESUMEN

UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Enzimas Ubiquitina-Conjugadoras/metabolismo , Sitios de Unión
3.
Proc Natl Acad Sci U S A ; 120(19): e2211510120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126720

RESUMEN

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.


Asunto(s)
Cartílago , Células Madre Pluripotentes Inducidas , Humanos , Cartílago/metabolismo , Condrocitos/metabolismo , Diferenciación Celular , Osteoblastos , Células Madre Pluripotentes Inducidas/metabolismo
4.
J Orthod ; 50(4): 361-366, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37002790

RESUMEN

OBJECTIVE: To investigate the total number of digital treatment plan (DTPs) and aligners manufactured for clear aligner therapy (CAT) by Invisalign® from initial treatment planning to the completion of CAT. DESIGN: A retrospective cohort study. MATERIAL AND METHODS: A total of 30 patients, from each of 11 experienced orthodontists, who commenced treatment over a 12-month period, were assessed regarding the number of DTPs and aligners prescribed from initial planning to completion of CAT. Patients were categorised according to the number of aligners prescribed by the initial DTP into mild (<15), moderate (15-29) or severe (>29). RESULTS: After the application of inclusion/exclusion criteria, 324 patients (71.9% women; median age = 28.5 years) undergoing non-extraction treatment with the Invisalign® appliance were assessed. The median number of initial DTPs was 3 (interquartile range [IQR] = 2, 1-9) per patient before acceptance by the orthodontist. Most (99.4%) patients required a refinement phase with a median of 2 (IQR = 2, 2-7) refinement plans recorded. A total of 9135 aligners per dental arch, was prescribed in the initial DTP of the 324 patients assessed and 8452 in the refinement phase. The median number of aligners per dental arch prescribed from the initial DTP was 26 (IQR = 12, 6-78) and from the refinement plans was 20.5 (IQR = 17, 0-132). CONCLUSION: A median of three initial DTPs and two refinement plans were required for patients undergoing non-extraction treatment with the Invisalign® appliance. Patients were prescribed almost double the number of aligners initially predicted to manage their malocclusion.


Asunto(s)
Maloclusión , Aparatos Ortodóncicos Removibles , Humanos , Femenino , Adulto , Masculino , Estudios Retrospectivos , Maloclusión/terapia , Ortodoncistas , Técnicas de Movimiento Dental
5.
Immunol Rev ; 315(1): 154-170, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939073

RESUMEN

Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.


Asunto(s)
Células Madre Pluripotentes , Adulto , Humanos , Diferenciación Celular , Células Madre Hematopoyéticas , Células Asesinas Naturales , Hematopoyesis
6.
Cell Rep ; 40(11): 111339, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103836

RESUMEN

Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-ß and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.


Asunto(s)
Hematopoyesis , Mesonefro , Adulto , Antígenos CD34 , Diferenciación Celular , Células Madre Hematopoyéticas , Humanos , Saco Vitelino
7.
Stem Cell Reports ; 17(9): 2156-2166, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35985333

RESUMEN

Human macrophages are a natural host of many mycobacterium species, including Mycobacterium abscessus (M. abscessus), an emerging pathogen affecting immunocompromised and cystic fibrosis patients with few available treatments. The search for an effective treatment is hindered by the lack of a tractable in vitro intracellular infection model. Here, we established a reliable model for M. abscessus infection using human pluripotent stem cell-derived macrophages (hPSC-macrophages). hPSC differentiation permitted reproducible generation of functional macrophages that were highly susceptible to M. abscessus infection. Electron microscopy demonstrated that M. abscessus was present in the hPSC-macrophage vacuoles. RNA sequencing analysis revealed a time-dependent host cell response, with differing gene and protein expression patterns post-infection. Engineered tdTOMATO-expressing hPSC-macrophages with GFP-expressing mycobacteria enabled rapid image-based high-throughput analysis of intracellular infection and quantitative assessment of antibiotic efficacy. Our study describes the first to our knowledge hPSC-based model for M. abscessus infection, representing a novel and accessible system for studying pathogen-host interaction and drug discovery.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium , Células Madre Pluripotentes , Humanos , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología
8.
Nature ; 604(7906): 534-540, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418685

RESUMEN

The ontogeny of human haematopoietic stem cells (HSCs) is poorly defined owing to the inability to identify HSCs as they emerge and mature at different haematopoietic sites1. Here we created a single-cell transcriptome map of human haematopoietic tissues from the first trimester to birth and found that the HSC signature RUNX1+HOXA9+MLLT3+MECOM+HLF+SPINK2+ distinguishes HSCs from progenitors throughout gestation. In addition to the aorta-gonad-mesonephros region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. A comparison of HSCs at different maturation stages revealed the establishment of HSC transcription factor machinery after the emergence of HSCs, whereas their surface phenotype evolved throughout development. The HSC transition to the liver marked a molecular shift evidenced by suppression of surface antigens reflecting nascent HSC identity, and acquisition of the HSC maturity markers CD133 (encoded by PROM1) and HLA-DR. HSC origin was tracked to ALDH1A1+KCNK17+ haemogenic endothelial cells, which arose from an IL33+ALDH1A1+ arterial endothelial subset termed pre-haemogenic endothelial cells. Using spatial transcriptomics and immunofluorescence, we visualized this process in ventrally located intra-aortic haematopoietic clusters. The in vivo map of human HSC ontogeny validated the generation of aorta-gonad-mesonephros-like definitive haematopoietic stem and progenitor cells from human pluripotent stem cells, and serves as a guide to improve their maturation to functional HSCs.


Asunto(s)
Células Endoteliales , Células Madre Hematopoyéticas , Diferenciación Celular , Endotelio , Femenino , Hematopoyesis , Humanos , Mesonefro , Embarazo
9.
J Pept Sci ; 28(4): e3376, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34713534

RESUMEN

Human sine oculis homeobox homolog (SIX) 1 contains a homeodomain (HD), which is important for binding to DNA. In this study, we carried out structural studies on the HD of human SIX1 using nuclear magnetic resonance (NMR) spectroscopy. Its secondary structures and dynamics in solution were explored. HD is well-structured in solution, and our study shows that it contains three α-helices. Dynamics study indicates that the N- and C-terminal residues of HD are flexible in solution. HD of human SIX1 exhibits molecular interactions with a short double-strand DNA sequence evidenced by the 1 H-15 N-heteronuclear single quantum correlation (HSQC) and 19 F-NMR experiments. Our current study provides structural information for HD of human SIX1. Further studies indicate that this construct can be utilized to study SIX1 and DNA interactions.


Asunto(s)
ADN , Proteínas de Homeodominio , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Estructura Secundaria de Proteína
10.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34695195

RESUMEN

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Proteínas de Fusión Oncogénica/metabolismo , Fosfolipasa C gamma/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Animales , Autorrenovación de las Células , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosfolipasa C gamma/genética , Proteoma , Proteína 1 Compañera de Translocación de RUNX1/genética , Transcriptoma , Translocación Genética
11.
Protein Sci ; 31(2): 422-431, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761455

RESUMEN

Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatasas , Inhibidores Enzimáticos/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Relación Estructura-Actividad
12.
Biomol NMR Assign ; 16(1): 51-56, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34787842

RESUMEN

KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Mutación , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Exp Hematol ; 103: 30-39.e2, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437953

RESUMEN

Exogenous growth factors play an important role in mediating hematopoietic differentiation of human pluripotent stem cells. We explored the role of different factors in early human blood cell production using blast colony formation in methylcellulose as a surrogate assay for yolk sac hematopoiesis. A reporter cell line that read out endothelial (SOX17+) and hematopoietic (RUNX1C+) progenitors facilitated the identification of basic fibroblast growth and vascular endothelial growth factor as critical signals for the progression of mesoderm into endothelium. Bone morphogenetic protein 4 was needed for the subsequent generation of blood from hemogenic endothelium, and this was antagonized by Activin A or high concentrations of the WNT agonist CHIR-99021. Manipulations of the Hedgehog pathway or inhibition of Notch signaling reduced blast colony frequency but did not perturb cell differentiation. These data help to define distinct roles for prerequisite growth factors that commit mesoderm to hemogenic endothelium and subsequently allocate cells to blood lineages.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hematopoyesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Saco Vitelino/citología , Línea Celular , Endotelio/citología , Endotelio/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Saco Vitelino/metabolismo
14.
STAR Protoc ; 1(3): 100130, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377024

RESUMEN

This protocol offers a detailed procedure for the in vitro differentiation of human pluripotent stem cells (hPSCs) to multipotent hematopoietic progenitors that arise from SOX17+ hemogenic endothelium, mimicking intra-embryonic, HOXA-positive, aorta-gonad mesonephros (AGM) hematopoiesis. The generated endothelium displays transcriptional similarities to cells sorted from human 5-week AGM, and CD45+CD34+RUNX1C+ progenitors share an accessible chromatin profile with adult hematopoietic stem cells and multipotent progenitors. Therefore, this protocol is suitable for the mechanistic study of human multipotent progenitor development and for modeling childhood leukemias. For complete details on the use and execution of this protocol, please refer to Nafria et al. (2020).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Diferenciación Celular/fisiología , Gónadas/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Mesonefro/citología , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología
15.
Development ; 147(20)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33028609

RESUMEN

The genetic regulatory network controlling early fate choices during human blood cell development are not well understood. We used human pluripotent stem cell reporter lines to track the development of endothelial and haematopoietic populations in an in vitro model of human yolk-sac development. We identified SOX17-CD34+CD43- endothelial cells at day 2 of blast colony development, as a haemangioblast-like branch point from which SOX17-CD34+CD43+ blood cells and SOX17+CD34+CD43- endothelium subsequently arose. Most human blood cell development was dependent on RUNX1. Deletion of RUNX1 only permitted a single wave of yolk sac-like primitive erythropoiesis, but no yolk sac myelopoiesis or aorta-gonad-mesonephros (AGM)-like haematopoiesis. Blocking GFI1 and/or GFI1B activity with a small molecule inhibitor abrogated all blood cell development, even in cell lines with an intact RUNX1 gene. Together, our data define the hierarchical requirements for RUNX1, GFI1 and/or GFI1B during early human haematopoiesis arising from a yolk sac-like SOX17-negative haemogenic endothelial intermediate.


Asunto(s)
Células Sanguíneas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Endotelio/metabolismo , Hematopoyesis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/metabolismo , Saco Vitelino/metabolismo , Células Sanguíneas/citología , Diferenciación Celular , Linaje de la Célula , Células Eritroides/citología , Células Eritroides/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Modelos Biológicos , Transcripción Genética
16.
J Med Chem ; 63(20): 11972-11989, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907324

RESUMEN

Transcriptional enhanced associate domain (TEAD) transcription factors together with coactivators and corepressors modulate the expression of genes that regulate fundamental processes, such as organogenesis and cell growth, and elevated TEAD activity is associated with tumorigenesis. Hence, novel modulators of TEAD and methods for their identification are in high demand. We describe the development of a new "thiol conjugation assay" for identification of novel small molecules that bind to the TEAD central pocket. The assay monitors prevention of covalent binding of a fluorescence turn-on probe to a cysteine in the central pocket by small molecules. Screening of a collection of compounds revealed kojic acid analogues as TEAD inhibitors, which covalently target the cysteine in the central pocket, block the interaction with coactivator yes-associated protein with nanomolar apparent IC50 values, and reduce TEAD target gene expression. This methodology promises to enable new medicinal chemistry programs aimed at the modulation of TEAD activity.


Asunto(s)
Descubrimiento de Drogas , Pironas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Compuestos de Sulfhidrilo/farmacología , Factores de Transcripción/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Fluorescencia , Humanos , Modelos Moleculares , Estructura Molecular , Pironas/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Factores de Transcripción/genética
17.
J Neurol Sci ; 417: 117078, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32768718

RESUMEN

BACKGROUND AND AIM: COVID-19 pandemic has resulted in an unprecedented increased usage of Personal protective equipment (PPE) by healthcare-workers. PPE usage causes headache in majority of users. We evaluated changes in cerebral hemodynamics among healthcare-workers using PPE. METHODS: Frontline healthcare-workers donning PPE at our tertiary center were included. Demographics, co-morbidities and blood-pressure were recorded. Transcranial Doppler (TCD) monitoring of middle cerebral artery was performed with 2-MHz probe. Mean flow velocity (MFV) and pulsatility index (PI) were recorded at baseline, after donning N95 respirator-mask, and after donning powered air-purifying respirator (PAPR), when indicated. End-tidal carbon-dioxide (ET-CO2) pressure was recorded for participants donning PAPR in addition to the N95 respirator-mask. RESULTS: A total of 154 healthcare-workers (mean age 29 ± 12 years, 67% women) were included. Migraine was the commonest co-morbidity in 38 (25%) individuals while 123 (80%) developed de-novo headache due to N95 mask. Donning of N95 respirator-mask resulted in significant increase in MFV (4.4 ± 10.4 cm/s, p < 0.001) and decrease in PI (0.13 ± 0.12; p < 0.001) while ET-CO2 increased by 3.1 ± 1.2 mmHg (p < 0.001). TCD monitoring in 24 (16%) participants donning PAPR and N95 respirator mask together showed normalization of PI, accompanied by normalization of ET-CO2 values within 5-min. Combined use of N95 respirator-mask and PAPR was more comfortable as compared to N95 respirator-mask alone. CONCLUSION: Use of N95 respirator-mask results in significant alterations in cerebral hemodynamics. However, these effects are mitigated by the use of additional PAPR. We recommend the use of PAPR together with the N95 mask for healthcare-workers doing longer duties in the hospital wards.


Asunto(s)
Betacoronavirus , Personal de Salud , Máscaras/efectos adversos , Enfermedades Profesionales/prevención & control , Pandemias , Dispositivos de Protección Respiratoria , Adulto , Velocidad del Flujo Sanguíneo , COVID-19 , Dióxido de Carbono/análisis , Circulación Cerebrovascular , Infecciones por Coronavirus/prevención & control , Estudios Transversales , Femenino , Cefalea/etiología , Hemodinámica , Humanos , Masculino , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/fisiopatología , Enfermedades Profesionales/etiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Flujo Pulsátil , SARS-CoV-2 , Ultrasonografía Doppler Transcraneal , Adulto Joven
18.
Pediatr Dent ; 42(3): 221-225, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32522327

RESUMEN

Purpose: The purpose of this study was to measure the shear bond strength (SBS) of glass ionomer cement (GIC) to artificial carious dentin with and without silver diamine fluoride (SDF) treatment. Methods: Permanent molars were sectioned and demineralized to create artificial carious lesions. In five groups, the demineralization of dentin, application of SDF, use of conditioner, and elapsed time between the placement of SDF and restoration were tested for differences in SBS using an UltraTester machine. Statistical analysis was done using the Kruskal-Wallis test and Tukey-Kramer multiple comparison tests. Results: The highest bond strength was found when GIC was placed on conditioned and demineralized dentin treated with SDF one week earlier. Treatment with SDF and use of conditioner did not statistically affect the SBS of GIC to demineralized dentin. Statistically significant increases in bond strength were found when one week elapsed between SDF application and GIC placement. The lowest bond strength was found with immediate GIC application onto SDF-treated demineralized dentin. Conclusions: These in vitro findings suggest that silver diamine fluoride treatment does not significantly affect the bond strength of glass ionomer cement to dentin lesions, and improved retention is obtained by allowing SDF solution to set for one week prior to GIC placement.


Asunto(s)
Recubrimiento Dental Adhesivo , Caries Dental , Dentina , Fluoruros Tópicos , Cementos de Ionómero Vítreo , Humanos , Ensayo de Materiales , Compuestos de Amonio Cuaternario , Resistencia al Corte , Compuestos de Plata
20.
Cell Rep ; 31(8): 107691, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460028

RESUMEN

Acute myeloid leukemia (AML) is a hematopoietic malignancy caused by recurrent mutations in genes encoding transcriptional, chromatin, and/or signaling regulators. The t(8;21) translocation generates the aberrant transcription factor RUNX1-ETO (RUNX1-RUNX1T1), which by itself is insufficient to cause disease. t(8;21) AML patients show extensive chromatin reprogramming and have acquired additional mutations. Therefore, the genomic and developmental effects directly and solely attributable to RUNX1-ETO expression are unclear. To address this, we employ a human embryonic stem cell differentiation system capable of forming definitive myeloid progenitor cells to express RUNX1-ETO in an inducible fashion. Induction of RUNX1-ETO causes extensive chromatin reprogramming by interfering with RUNX1 binding, blocks differentiation, and arrests cellular growth, whereby growth arrest is reversible following RUNX1-ETO removal. Single-cell gene expression analyses show that RUNX1-ETO induction alters the differentiation of early myeloid progenitors, but not of other progenitor types, indicating that oncoprotein-mediated transcriptional reprogramming is highly target cell specific.


Asunto(s)
Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Progenitoras Mieloides/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...