Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22499, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577798

RESUMEN

Discovered in 1819 in the tropical waters off Singapore, the magnificent Neptune's cup sponge Cliona patera (Hardwicke, 1820) was harvested for museums and collectors until it was presumed extinct worldwide for over a century since 1907. Recently in 2011, seven living individuals were rediscovered in Singapore with six relocated to a marine protected area in an effort to better monitor and protect the population, as well as to enhance external fertilisation success. To determine genetic diversity within the population, we sequenced the complete mitochondrial genomes and nuclear ribosomal DNA of these six individuals and found extremely limited variability in their genes. The low genetic diversity of this rediscovered population is confirmed by comparisons with close relatives of C. patera and could compromise the population's ability to recover from environmental and anthropogenic pressures associated with the highly urbanised coastlines of Singapore. This lack of resilience is compounded by severe predation which has been shrinking sponge sizes by up to 5.6% every month. Recovery of this highly endangered population may require ex situ approaches and crossbreeding with other populations, which are also rare.


Asunto(s)
Poríferos , Conducta Predatoria , Animales , Poríferos/genética , Secuencia de Bases , ADN Ribosómico , Variación Genética
2.
Front Microbiol ; 12: 631445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267732

RESUMEN

Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA